首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2436篇
  免费   213篇
  国内免费   2篇
  2651篇
  2023年   14篇
  2022年   30篇
  2021年   63篇
  2020年   27篇
  2019年   30篇
  2018年   51篇
  2017年   35篇
  2016年   76篇
  2015年   126篇
  2014年   111篇
  2013年   144篇
  2012年   203篇
  2011年   185篇
  2010年   125篇
  2009年   94篇
  2008年   140篇
  2007年   149篇
  2006年   145篇
  2005年   117篇
  2004年   116篇
  2003年   104篇
  2002年   89篇
  2001年   44篇
  2000年   33篇
  1999年   31篇
  1998年   25篇
  1997年   15篇
  1996年   12篇
  1995年   12篇
  1994年   21篇
  1993年   14篇
  1992年   17篇
  1991年   19篇
  1990年   18篇
  1989年   13篇
  1988年   15篇
  1987年   10篇
  1986年   10篇
  1985年   12篇
  1983年   10篇
  1982年   7篇
  1980年   11篇
  1978年   15篇
  1977年   7篇
  1976年   7篇
  1975年   13篇
  1974年   18篇
  1973年   8篇
  1972年   9篇
  1971年   7篇
排序方式: 共有2651条查询结果,搜索用时 24 毫秒
41.
A phosphotyrosylprotein phosphatase has been purified from human red cell cytosol by successive DEAE cellulose, phosphocellulose and Red Procion-H3B-Sepharose chromatography. Overall purification was about 9000 with a yield of 30%. The enzyme was more than 95% pure as judged by SDS polyacrylamide gel. Its molecular weight was 17,000 and maximum activity was observed at pH 5.5. It was active towards both the phosphorylated tyrosine on the cytosolic fragment of the red cell protein band 3 and para-nitrophenyl phosphate. However the effects of ligands differ for the two substrates.  相似文献   
42.
Though the root biomass of tropical rainforest trees is concentrated in the upper soil layers, soil water uptake by deep roots has been shown to contribute to tree transpiration. A precise evaluation of the relationship between tree dimensions and depth of water uptake would be useful in tree-based modelling approaches designed to anticipate the response of tropical rainforest ecosystems to future changes in environmental conditions. We used an innovative dual-isotope labelling approach (deuterium in surface soil and oxygen at 120-cm depth) coupled with a modelling approach to investigate the role of tree dimensions in soil water uptake in a tropical rainforest exposed to seasonal drought. We studied 65 trees of varying diameter and height and with a wide range of predawn leaf water potential (Ψpd) values. We confirmed that about half of the studied trees relied on soil water below 100-cm depth during dry periods. Ψpd was negatively correlated with depth of water extraction and can be taken as a rough proxy of this depth. Some trees showed considerable plasticity in their depth of water uptake, exhibiting an efficient adaptive strategy for water and nutrient resource acquisition. We did not find a strong relationship between tree dimensions and depth of water uptake. While tall trees preferentially extract water from layers below 100-cm depth, shorter trees show broad variations in mean depth of water uptake. This precludes the use of tree dimensions to parameterize functional models.  相似文献   
43.
The biosynthesis of plant natural products involves a large number of enzymes that create and elaborate a bewildering array of chemical structures, which are generally involved in ecophysiological interactions. Alkaloids are one of the largest groups of natural products and are generally produced through an assortment of intricate pathways. The application of molecular biochemical approaches to investigate the cell biology of alkaloid pathways has revealed a paradigm for the complex, yet highly ordered, organization of biosynthetic enzymes at both the cellular and subcellular levels. Many different cell types have been implicated in alkaloid formation and storage, in one case suggesting the intercellular transport of enzymes. The localization of enzymes to numerous cellular compartments shows the importance of protein targeting in the assembly of alkaloid pathways. Recent studies have also pointed to the possible interaction of biosynthetic enzymes in multi-enzyme complexes. These processes must be considered to be integral components of the mechanisms that regulate alkaloid biosynthesis and perhaps other natural product pathways.  相似文献   
44.
45.
46.
The control of alternative pre-mRNA splicing often requires the participation of factors displaying synergistic or antagonistic activities. In the hnRNP A1 pre-mRNA, three elements promote the exclusion of alternative exon 7B, while a fourth intron element (CE9) represses splicing of exon 7B to the downstream exon. We have shown previously that the 5' portion of the 38-nucleotide-long CE9 element is bound by SRp30c, and that this interaction is important for repression in vitro. To determine whether SRp30c alone can impose repression, we tested a high-affinity SRp30c binding site that we identified using the SELEX protocol. We find that multiple high-affinity SRp30c sites are required to replicate the level of repression obtained with CE9, and that both the 5' and the 3' portions of CE9 contribute to SRp30c binding. Performing RNA affinity chromatography with the complete CE9 element recovered hnRNP I/PTB. Surprisingly however, His-tagged PTB reduced the binding of SRp30c to CE9 in a nuclear extract, stimulated splicing to a downstream 3' splice site, and relieved the CE9-mediated splicing repression in vitro. Our in vivo results are consistent with the notion that increasing PTB levels alleviates the repression imposed by CE9 to a downstream 3' splice site. Thus, PTB can function as an anti-repressor molecule to counteract the splicing inhibitory activity of SRp30c.  相似文献   
47.
5'-AMP-activated protein kinase (AMPK) was recently suggested to regulate pyruvate dehydrogenase (PDH) activity and thus pyruvate entry into the mitochondrion. We aimed to provide evidence for a direct link between AMPK and PDH in resting and metabolically challenged (exercised) skeletal muscle. Compared with rest, treadmill running increased AMPKalpha1 activity in alpha(2)KO mice (90%, P < 0.01) and increased AMPKalpha2 activity in wild-type (WT) mice (110%, P < 0.05), leading to increased AMPKalpha Thr(172) (WT: 40%, alpha(2)KO: 100%, P < 0.01) and ACCbeta Ser(227) phosphorylation (WT: 70%, alpha(2)KO: 210%, P < 0.01). Compared with rest, exercise significantly induced PDH-E(1)alpha site 1 (WT: 20%, alpha(2)KO: 62%, P < 0.01) and site 2 (only alpha(2)KO: 83%, P < 0.01) dephosphorylation and PDH(a) [ approximately 200% in both genotypes (P < 0.01)]. Compared with WT, PDH dephosphorylation and activation was markedly enhanced in the alpha(2)KO mice both at rest and during exercise. The increased PDH(a) activity during exercise was associated with elevated glycolytic flux, and muscles from the alpha(2)KO mice displayed marked lactate accumulation and deranged energy homeostasis. Whereas mitochondrial DNA content was normal, the expression of several mitochondrial proteins was significantly decreased in muscle of alpha(2)KO mice. In isolated resting EDL muscles, activation of AMPK signaling by AICAR did not change PDH-E(1)alpha phosphorylation in either genotype. PDH is activated in mouse skeletal muscle in response to exercise and is independent of AMPKalpha2 expression. During exercise, alpha(2)KO muscles display deranged energy homeostasis despite enhanced glycolytic flux and PDH(a) activity. This may be linked to decreased mitochondrial oxidative capacity.  相似文献   
48.
Activation of 5-HT(1A) receptors in the medullary raphé decreases sympathetic outflow to thermoregulatory mechanisms, including brown adipose tissue (BAT), thermogenesis, and peripheral vasoconstriction when these mechanisms are previously activated with leptin, prostaglandins, or cooling. These same mechanisms are also inhibited during rapid eye movement (REM) sleep. It is not known whether shivering is also modulated by medullary raphé neurons. We previously showed in the conscious piglet that activation of 5-HT(1A) receptors with 8-OH-DPAT (DPAT) in the paragigantocellularis lateralis (PGCL), a medullary region lateral to the midline raphé that contains 5-HT neurons, decreases heart rate, body temperature and muscle activity during non-rapid eye movement (NREM) sleep. We therefore hypothesized that activation of 5-HT(1A) receptors in the PGCL would also attenuate shivering and peripheral vasoconstriction during cooling. During REM sleep in a cool environment, shivering, carbon dioxide production, and body temperature decreased, and ear capillary blood flow and ear skin temperature increased. Shivering associated with rapid cooling was attenuated after dialysis of DPAT into the PGCL. In animals maintained in a continuously cool environment, dialysis of DPAT into the PGCL attenuated shivering and decreased body temperature, but there were no significant increases in ear capillary blood flow or ear skin temperature. We conclude that both naturally occurring REM sleep and exogenous activation of 5-HT(1A) receptors in the PGCL are associated with a suspension of shivering during cooling. Our data are consistent with the hypothesis that 5-HT neurons in the PGCL facilitate oscillating spinal motor circuits involved in shivering but are less involved in modulating sympathetically mediated thermoregulatory mechanisms.  相似文献   
49.
Summary The last decade has witnessed successful applications of plant tissue culture techniques in several crops. During that same period, studies in plant molecular genetics have also grown exponentially. Molecular markers (isozymes, RFLPs, and PCR-based markers such as RAPDs) are now used to study many of the current limitations of tissue culture. They have been used to investigate mechanisms that underlie somaclonal variation in the nuclear, mitochondrial, and chloroplast genomes. One recurrent problem with several tissue culture systems has been the difficulty of determining the origin of regenerants. Molecular markers represent powerful tools to determine precisely the origin of plants derived from microspore or anther culture, protoplast fusion, and other tissue culture studies where this information is important. With improvements in tissue culture techniques, populations of doubled haploid lines have been produced in several major crop species. Doubled haploid populations have proven useful in the production of molecular maps and in tagging important agronomic traits. This review describes the use of molecular markers to address fundamental and practical questions of plant tissue culture, and discusses the potential of improvements in molecular techniques and new molecular markers such as SCAR and STS along with high-resolution mapping strategies.  相似文献   
50.

Background

Bone mass is maintained by continuous remodeling through repeated cycles of bone resorption by osteoclasts and bone formation by osteoblasts. This remodeling process is regulated by many systemic and local factors.

Methodology/Principal Findings

We identified collagen triple helix repeat containing-1 (Cthrc1) as a downstream target of bone morphogenetic protein-2 (BMP2) in osteochondroprogenitor-like cells by PCR-based suppression subtractive hybridization followed by differential hybridization, and found that Cthrc1 was expressed in bone tissues in vivo. To investigate the role of Cthrc1 in bone, we generated Cthrc1-null mice and transgenic mice which overexpress Cthrc1 in osteoblasts (Cthrc1 transgenic mice). Microcomputed tomography (micro-CT) and bone histomorphometry analyses showed that Cthrc1-null mice displayed low bone mass as a result of decreased osteoblastic bone formation, whereas Cthrc1 transgenic mice displayed high bone mass by increase in osteoblastic bone formation. Osteoblast number was decreased in Cthrc1-null mice, and increased in Cthrc1 transgenic mice, respectively, while osteoclast number had no change in both mutant mice. In vitro, colony-forming unit (CFU) assays in bone marrow cells harvested from Cthrc1-null mice or Cthrc1 transgenic mice revealed that Cthrc1 stimulated differentiation and mineralization of osteoprogenitor cells. Expression levels of osteoblast specific genes, ALP, Col1a1, and Osteocalcin, in primary osteoblasts were decreased in Cthrc1-null mice and increased in Cthrc1 transgenic mice, respectively. Furthermore, BrdU incorporation assays showed that Cthrc1 accelerated osteoblast proliferation in vitro and in vivo. In addition, overexpression of Cthrc1 in the transgenic mice attenuated ovariectomy-induced bone loss.

Conclusions/Significance

Our results indicate that Cthrc1 increases bone mass as a positive regulator of osteoblastic bone formation and offers an anabolic approach for the treatment of osteoporosis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号