首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21篇
  免费   3篇
  2021年   1篇
  2020年   2篇
  2016年   1篇
  2015年   3篇
  2014年   2篇
  2013年   1篇
  2012年   1篇
  2010年   1篇
  2009年   2篇
  2008年   1篇
  2007年   2篇
  2006年   2篇
  2005年   2篇
  2000年   1篇
  1999年   2篇
排序方式: 共有24条查询结果,搜索用时 0 毫秒
21.
Detection of heteroplasmic mitochondrial DNA in single mitochondria   总被引:1,自引:0,他引:1  

Background

Mitochondrial DNA (mtDNA) genome mutations can lead to energy and respiratory-related disorders like myoclonic epilepsy with ragged red fiber disease (MERRF), mitochondrial myopathy, encephalopathy, lactic acidosis and stroke (MELAS) syndrome, and Leber''s hereditary optic neuropathy (LHON). It is not well understood what effect the distribution of mutated mtDNA throughout the mitochondrial matrix has on the development of mitochondrial-based disorders. Insight into this complex sub-cellular heterogeneity may further our understanding of the development of mitochondria-related diseases.

Methodology

This work describes a method for isolating individual mitochondria from single cells and performing molecular analysis on that single mitochondrion''s DNA. An optical tweezer extracts a single mitochondrion from a lysed human HL-60 cell. Then a micron-sized femtopipette tip captures the mitochondrion for subsequent analysis. Multiple rounds of conventional DNA amplification and standard sequencing methods enable the detection of a heteroplasmic mixture in the mtDNA from a single mitochondrion.

Significance

Molecular analysis of mtDNA from the individually extracted mitochondrion demonstrates that a heteroplasmy is present in single mitochondria at various ratios consistent with the 50/50 heteroplasmy ratio found in single cells that contain multiple mitochondria.  相似文献   
22.
We describe an adaptation of the yeast three-hybrid system that allows the reconstitution in vivo of tripartite (protein-RNA-protein) ribonucleoproteins (RNPs). To build and try this system that we called RNP interaction trap assay (RITA), we used as a model the autoantigenic Ro RNPs. hY RNAs bear distinct binding sites for Ro60 and La proteins, and Ro RNPs are thus physiologically tripartite (Ro60/hY RNA/La). Using recombinant La (rLa) and Ro60 (rRo60) proteins and recombinant hY RNAs (rhY) co-expressed in yeast, we found that RNPs made of rRo60/rhY/rLa were readily reassembled. Reconstitution of tripartite RNPs was critically dependent on the presence of an appropriate Ro60 binding site on the recombinant RNA. The RITA assay was further used to detect (rRo60/rhY RNP)-binding proteins from a HeLa cell cDNA library, allowing specific identification of La and of a novel Ro RNP-binding protein (RoBPI) in more than 70% of positive clones. RITA assay may complement already available two- and three-hybrid systems to characterize RNP-binding proteins by allowing the in vivo identification of interactions strictly dependent upon the simultaneous presence of a protein and of its cognate RNA.  相似文献   
23.
Human Ro ribonucleoproteins (RNPs) are autoantigenic particles of unknown function(s) that consist of a 60-kDa protein (Ro60) associated with one hY RNA (hY1-5). Using a modified yeast three-hybrid system, named RNP interaction trap assay (RITA), we cloned a novel Ro RNP-binding protein (RoBPI), based on its property to interact in vivo in yeast with an RNP complex made of recombinant Ro60 (rRo60) protein and hY5 (rhY5) RNA. RoBPI cDNA contains three conserved RNA recognition motifs (RRM) and is present as a family of isoforms differing slightly at their 5' end. The 2.0-kb RoBPI mRNA was detected in all human tissues tested. Highly homologous cDNA sequences were found in banks of expressed sequence tags (ESTs) from mice. Two-hybrid, three-hybrid, and RITA experiments respectively established that 60 kDa RoBPI did not interact in yeast with rRo60 alone, with rhY5 RNA alone, or with bait RNPs consisting of rRo60 and recombinant hY1, hY3, or hY4 RNAs. RoBPI coimmunoprecipitated with Ro RNPs from HeLa cell extracts and partially colocalized with Ro60 in nuclei of cultured cells. Because hY5 RNA and RohY5 RNPs are recent evolutionary additions seen only in primates, but RoBPI seems more conserved, their interaction may represent a gain of function for Ro RNPs. Alternatively, interaction of RohY5 RNPs with RoBPI may have no functional bearing, but may underlie some of the unique biochemical and immunological properties of these RNPs.  相似文献   
24.
Éditorial     
J.-Y. Boire 《IRBM》2012,33(2):41
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号