首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   197篇
  免费   14篇
  2019年   8篇
  2018年   4篇
  2016年   3篇
  2015年   2篇
  2014年   10篇
  2013年   12篇
  2012年   17篇
  2011年   9篇
  2010年   5篇
  2009年   4篇
  2008年   9篇
  2007年   6篇
  2006年   11篇
  2005年   9篇
  2004年   8篇
  2003年   6篇
  2002年   12篇
  2001年   2篇
  1999年   3篇
  1997年   5篇
  1996年   4篇
  1994年   4篇
  1992年   3篇
  1991年   3篇
  1989年   3篇
  1988年   2篇
  1985年   5篇
  1984年   1篇
  1982年   1篇
  1981年   1篇
  1980年   2篇
  1979年   2篇
  1978年   4篇
  1977年   1篇
  1976年   2篇
  1972年   4篇
  1971年   2篇
  1969年   1篇
  1968年   1篇
  1967年   2篇
  1966年   1篇
  1965年   1篇
  1964年   1篇
  1963年   3篇
  1961年   1篇
  1960年   1篇
  1959年   2篇
  1958年   1篇
  1957年   1篇
  1907年   1篇
排序方式: 共有211条查询结果,搜索用时 15 毫秒
61.
We present the assembly category assessment in the 13th edition of the CASP community-wide experiment. For the second time, protein assemblies constitute an independent assessment category. Compared to the last edition we see a clear uptake in participation, more oligomeric targets released, and consistent, albeit modest, improvement of the predictions quality. Looking at the tertiary structure predictions, we observe that ignoring the oligomeric state of the targets hinders modeling success. We also note that some contact prediction groups successfully predicted homomeric interfacial contacts, though it appears that these predictions were not used for assembly modeling. Homology modeling with sizeable human intervention appears to form the basis of the assembly prediction techniques in this round of CASP. Future developments should see more integrated approaches where subunits are modeled in the context of the assemblies they form.  相似文献   
62.
Both B cells and dendritic cells (DCs) have been implicated as autoantigen-presenting cells in the activation of self-reactive T cells. However, most self-proteins are ubiquitously and/or developmentally expressed, making it difficult to determine the source and the exposure of autoantigens to APCs in a controlled manner. In this study, we have used an Ig transgenic mouse model to examine the mechanisms by which B cells and other APCs acquire and present lupus autoantigens in vivo. Targeting a lupus autoantigen, the small nuclear ribonucleoprotein particle D protein, to the BCR activates autoreactive T cells in the periphery. Our in vivo studies demonstrate that autoantigen-specific B cells, when present in the repertoire, are the first subset of APCs to capture and present self-proteins for activating T cells. Thereafter, DCs acquire self-Ag and become effective APCs for stimulating the same subsets of autoreactive T cells. This mechanism provides one explanation of how early steps in autoimmunity can focus responses, via BCR, at a small group of self-proteins among the total milieu of intracellular self-proteins. Subsequently, DCs and other professional APCs may then amplify and perpetuate the autoimmune T cell response.  相似文献   
63.
64.
Protein structures are classically described in terms of secondary structures. Even if the regular secondary structures have relevant physical meaning, their recognition from atomic coordinates has some important limitations such as uncertainties in the assignment of boundaries of helical and β-strand regions. Further, on an average about 50% of all residues are assigned to an irregular state, i.e., the coil. Thus different research teams have focused on abstracting conformation of protein backbone in the localized short stretches. Using different geometric measures, local stretches in protein structures are clustered in a chosen number of states. A prototype representative of the local structures in each cluster is generally defined. These libraries of local structures prototypes are named as "structural alphabets". We have developed a structural alphabet, named Protein Blocks, not only to approximate the protein structure, but also to predict them from sequence. Since its development, we and other teams have explored numerous new research fields using this structural alphabet. We review here some of the most interesting applications.  相似文献   
65.
Recent genome-wide association studies (GWASs) have identified candidate genes contributing to cancer risk through low-penetrance mutations. Many of these genes were unexpected and, intriguingly, included well-known players in carcinogenesis at the somatic level. To assess the hypothesis of a germline-somatic link in carcinogenesis, we evaluated the distribution of somatic gene labels within the ordered results of a breast cancer risk GWAS. This analysis suggested frequent influence on risk of genetic variation in loci encoding for “driver kinases” (i.e., kinases encoded by genes that showed higher somatic mutation rates than expected by chance and, therefore, whose deregulation may contribute to cancer development and/or progression). Assessment of these predictions using a population-based case-control study in Poland replicated the association for rs3732568 in EPHB1 (odds ratio (OR) = 0.79; 95% confidence interval (CI): 0.63–0.98; Ptrend = 0.031). Analyses by early age at diagnosis and by estrogen receptor α (ERα) tumor status indicated potential associations for rs6852678 in CDKL2 (OR = 0.32, 95% CI: 0.10–1.00; Precessive = 0.044) and rs10878640 in DYRK2 (OR = 2.39, 95% CI: 1.32–4.30; Pdominant = 0.003), and for rs12765929, rs9836340, rs4707795 in BMPR1A, EPHA3 and EPHA7, respectively (ERα tumor status Pinteraction<0.05). The identification of three novel candidates as EPH receptor genes might indicate a link between perturbed compartmentalization of early neoplastic lesions and breast cancer risk and progression. Together, these data may lay the foundations for replication in additional populations and could potentially increase our knowledge of the underlying molecular mechanisms of breast carcinogenesis.  相似文献   
66.
The RNA-dependent RNA polymerase (NS5B) of hepatitis C virus (HCV) is essential for the replication of viral RNA and thus constitutes a valid target for the chemotherapeutic intervention of HCV infection. In this report, we describe the identification of 2'-substituted nucleosides as inhibitors of HCV replication. The 5'-triphosphates of 2'-C-methyladenosine and 2'-O-methylcytidine are found to inhibit NS5B-catalyzed RNA synthesis in vitro, in a manner that is competitive with substrate nucleoside triphosphate. NS5B is able to incorporate either nucleotide analog into RNA as determined with gel-based incorporation assays but is impaired in its ability to extend the incorporated analog by addition of the next nucleotide. In a subgenomic replicon cell line, 2-C-methyladenosine and 2'-O-methylcytidine inhibit HCV RNA replication. The 5'-triphosphates of both nucleosides are detected intracellularly following addition of the nucleosides to the media. However, significantly higher concentrations of 2'-C-methyladenosine triphosphate than 2'-O-methylcytidine triphosphate are detected, consistent with the greater potency of 2'-C-methyladenosine in the replicon assay, despite similar inhibition of NS5B by the triphosphates in the in vitro enzyme assays. Thus, the 2'-modifications of natural substrate nucleosides transform these molecules into potent inhibitors of HCV replication.  相似文献   
67.
Diverse functions, including DNA replication, recombination and repair, occur during S phase of the eukaryotic cell cycle. It has been proposed that p53 and BLM help regulate these functions. We show that p53 and BLM accumulated after hydroxyurea (HU) treatment, and physically associated and co-localized with each other and with RAD51 at sites of stalled DNA replication forks. HU-induced relocalization of BLM to RAD51 foci was p53 independent. However, BLM was required for efficient localization of either wild-type or mutated (Ser15Ala) p53 to these foci and for physical association of p53 with RAD51. Loss of BLM and p53 function synergistically enhanced homologous recombination frequency, indicating that they mediated the process by complementary pathways. Loss of p53 further enhanced the rate of spontaneous sister chromatid exchange (SCE) in Bloom syndrome (BS) cells, but not in their BLM-corrected counterpart, indicating that involvement of p53 in regulating spontaneous SCE is BLM dependent. These results indicate that p53 and BLM functionally interact during resolution of stalled DNA replication forks and provide insight into the mechanism of genomic fidelity maintenance by these nuclear proteins.  相似文献   
68.
RNA exhibits a large diversity of conformations. Three thousand nucleotides of 23S and 5S ribosomal RNA from a structure of the large ribosomal subunit were analyzed in order to classify their conformations. Fourier averaging of the six 3D distributions of torsion angles and analyses of the resulting pseudo electron maps, followed by clustering of the preferred combinations of torsion angles were performed on this dataset. Eighteen non-A-type conformations and 14 A-RNA related conformations were discovered and their torsion angles were determined; their Cartesian coordinates are available.  相似文献   
69.
70.
Our objective was to study brain amino acid metabolism in response to ketosis. The underlying hypothesis is that ketosis is associated with a fundamental change of brain amino acid handling and that this alteration is a factor in the anti-epileptic effect of the ketogenic diet. Specifically, we hypothesize that brain converts ketone bodies to acetyl-CoA and that this results in increased flux through the citrate synthetase reaction. As a result, oxaloacetate is consumed and is less available to the aspartate aminotransferase reaction; therefore, less glutamate is converted to aspartate and relatively more glutamate becomes available to the glutamine synthetase and glutamate decarboxylase reactions. We found in a mouse model of ketosis that the concentration of forebrain aspartate was diminished but the concentration of acetyl-CoA was increased. Studies of the incorporation of 13C into glutamate and glutamine with either [1-(13)C]glucose or [2-(13)C]acetate as precursor showed that ketotic brain metabolized relatively less glucose and relatively more acetate. When the ketotic mice were administered both acetate and a nitrogen donor, such as alanine or leucine, they manifested an increased forebrain concentration of glutamine and GABA. These findings supported the hypothesis that in ketosis there is greater production of acetyl-CoA and a consequent alteration in the equilibrium of the aspartate aminotransferase reaction that results in diminished aspartate production and potentially enhanced synthesis of glutamine and GABA.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号