首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   428篇
  免费   25篇
  2021年   5篇
  2019年   3篇
  2018年   5篇
  2017年   6篇
  2016年   9篇
  2015年   8篇
  2014年   10篇
  2013年   20篇
  2012年   23篇
  2011年   31篇
  2010年   22篇
  2009年   11篇
  2008年   25篇
  2007年   24篇
  2006年   21篇
  2005年   15篇
  2004年   19篇
  2003年   14篇
  2002年   19篇
  2001年   9篇
  2000年   14篇
  1999年   3篇
  1997年   3篇
  1996年   4篇
  1995年   2篇
  1994年   2篇
  1993年   2篇
  1992年   3篇
  1991年   7篇
  1990年   7篇
  1989年   13篇
  1988年   8篇
  1987年   11篇
  1986年   9篇
  1985年   6篇
  1984年   5篇
  1983年   2篇
  1982年   2篇
  1979年   7篇
  1978年   3篇
  1975年   5篇
  1974年   2篇
  1973年   3篇
  1972年   5篇
  1971年   2篇
  1970年   3篇
  1969年   3篇
  1968年   4篇
  1967年   3篇
  1966年   4篇
排序方式: 共有453条查询结果,搜索用时 15 毫秒
51.
The structure of the mixed, enzyme-cofactor disulfide intermediate of ketopropyl-coenzyme M oxidoreductase/carboxylase has been determined by X-ray diffraction methods. Ketopropyl-coenzyme M oxidoreductase/carboxylase belongs to a family of pyridine nucleotide-containing flavin-dependent disulfide oxidoreductases, which couple the transfer of hydride derived from the NADPH to the reduction of protein cysteine disulfide. Ketopropyl-coenzyme M oxidoreductase/carboxylase, a unique member of this enzyme class, catalyzes thioether bond cleavage of the substrate, 2-ketopropyl-coenzyme M, and carboxylation of what is thought to be an enzyme-stabilized enolacetone intermediate. The mixed disulfide of 2-ketopropyl-coenzyme M oxidoreductase/carboxylase was captured through crystallization of the enzyme with the physiological products of the reaction, acetoacetate, coenzyme M, and NADP, and reduction of the crystals with dithiothreitol just prior to data collection. Density in the active-site environment consistent with acetone, the product of reductive decarboxylation of acetoacetate, was revealed in this structure in addition to a well-defined hydrophobic pocket or channel that could be involved in the access for carbon dioxide. The analysis of this structure and that of a coenzyme-M-bound form provides insights into the stabilization of intermediates, substrate carboxylation, and product release.  相似文献   
52.
53.
In the yeast Saccharomyces cerevisiae, two similar phosphatidylinositol 3-kinase complexes (complexes I and II) function in distinct biological processes, complex I in autophagy and complex II in the vacuolar protein sorting via endosomes. Atg14p is only integrated into complex I, likely facilitating the function of complex I in autophagy. Deletion analysis of Atg14p revealed that N-terminal region containing the coiled-coil structures was essential and sufficient for autophagy. Atg14p localized to pre-autophagosomal structure (PAS) and vacuolar membranes, whereas Vps38p, a component specific to complex II, localized to endosomes and vacuolar membranes. Vps34p and Vps30p, components shared by the two complexes, localized to the PAS, vacuolar membranes, and several punctate structures that included endosomes. The localization of these components to the PAS was Atg14p dependent but not dependent on Vps38p. Conversely, localization of these proteins to endosomes required Vps38p but not Atg14p. Vps15p, regulatory subunit of the Vps34p complexes, localized to the PAS, vacuolar membranes, and punctate structures independent of both Atg14p and Vps38p. Together, these results indicate that complexes I and II function in distinct biological processes by localizing to specific compartments in a manner mediated by specific components of each complex, Atg14p and Vps38p, respectively.  相似文献   
54.
External alkalization activates the Rim101 pathway in Saccharomyces cerevisiae. In this pathway, three integral membrane proteins, Rim21, Dfg16, and Rim9, are considered to be the components of the pH sensor machinery. However, how these proteins are involved in pH sensing is totally unknown. In this work, we investigated the localization, physical interaction, and interrelationship of Rim21, Dfg16, and Rim9. These proteins were found to form a complex and to localize to the plasma membrane in a patchy and mutually dependent manner. Their cellular level was also mutually dependent. In particular, the Rim21 level was significantly decreased in dfg16Δ and rim9Δ cells. Upon external alkalization, the proteins were internalized and degraded. We also demonstrate that the transient degradation of Rim21 completely suppressed the Rim101 pathway but that the degradation of Dfg16 or Rim9 did not. This finding strongly suggests that Rim21 is the pH sensor protein and that Dfg16 and Rim9 play auxiliary functions through maintaining the level of Rim21 and assisting in its plasma membrane localization. Even without external alkalization, the Rim101 pathway was activated in a Rim21-dependent manner by either protonophore treatment or depletion of phosphatidylserine in the inner leaflet of the plasma membrane, both of which caused plasma membrane depolarization like the external alkalization. Therefore, plasma membrane depolarization seems to be one of the key signals for the pH sensor molecule Rim21.  相似文献   
55.
Personality and temperament were hypothesized to function as important factors affecting life history strategies. Recent research has demonstrated the association between temperamental traits and reproduction in humans, however, the underlying mechanisms are still poorly understood. This study presents evidence for an association between temperamental traits and woman's fecundity, as indicated by levels of ovarian steroid hormones during the menstrual cycle. On a large sample of urban, reproductive age women (n = 108) we demonstrated that activity, endurance and emotional reactivity are associated with levels of estrogen and with a pattern of change of progesterone levels. Women high in activity, high in endurance and low in emotional reactivity had up to twice as high estradiol levels and more favorable progesterone profiles as women low in activity, low in endurance and high in emotional reactivity. The temperamental traits we measured highly overlap with extraversion, neuroticism and negative emotionality that were reported to correlate with reproductive success. Our findings thus suggest a possible explanation for these relationships, linking personality and women's reproductive success through a hormonal pathway.  相似文献   
56.
Swimming Escherichia coli cells are propelled by the rotary motion of their flagellar filaments. In the normal swimming pattern, filaments positioned randomly over the cell form a bundle at the posterior pole. It has long been assumed that the hook functions as a universal joint, transmitting rotation on the motor axis through up to ~90° to the filament in the bundle. Structural models of the hook have revealed how its flexibility is expected to arise from dynamic changes in the distance between monomers in the helical lattice. In particular, each of the 11 protofilaments that comprise the hook is predicted to cycle between short and long forms, corresponding to the inside and outside of the curved hook, once each revolution of the motor when the hook is acting as a universal joint. To test this, we genetically modified the hook so that it could be stiffened by binding streptavidin to biotinylated monomers, impeding their motion relative to each other. We found that impeding the action of the universal joint resulted in atypical swimming behavior as a consequence of disrupted bundle formation, in agreement with the universal joint model.  相似文献   
57.
The formation of glial scars after spinal cord injury (SCI) is one of the factors inhibiting axonal regeneration. Glial scars are mainly composed of reactive astrocytes overexpressing intermediate filament (IF) proteins such as glial fibrillary acidic protein (GFAP) and vimentin. In the current study, we delivered small interfering RNAs (siRNAs) targeting these IF proteins to SCI model rats using photomechanical waves (PMWs), and examined the restoration of motor function in the rats. PMWs are generated by irradiating a light-absorbing material with 532-nm nanosecond laser pulses from a Q-switched Nd:YAG laser. PMWs can site-selectively increase the permeability of the cell membrane for molecular delivery. Rat spinal cord was injured using a weight-drop device and the siRNA(s) solutions were intrathecally injected into the vicinity of the exposed SCI, to which PMWs were applied. We first confirmed the substantial uptake of fluorescence-labeled siRNA by deep glial cells; then we delivered siRNAs targeting GFAP and vimentin into the lesion. The treatment led to a significant improvement in locomotive function from five days post-injury in rats that underwent PMW-mediated siRNA delivery. This was attributable to the moderate silencing of the IF proteins and the subsequent decrease in the cavity area in the injured spinal tissue.  相似文献   
58.
We initially investigated whether females of the cabbage butterfly, Pieris rapae crucivora, exhibit a seasonal change in ultraviolet wing color, which is a key stimulus for mate recognition by conspecific males, and whether and how a seasonal change affects the mating behavior of the males. We found that female UV wing color changes seasonally, the color being more pronounced in summer than in spring or autumn. We also demonstrated that male mate preference changes seasonally, concomitantly with the change in female UV color. Specifically, males appearing in summer exhibit a mating preference for summer-form females over spring- or autumn-form females, while those appearing in spring or autumn exhibit no seasonal preference, thereby facilitating more effective mate location. Our results suggest that this field of study will require more strictly controlled experimental investigation in which the seasonal change in UV color is considered when UV-influenced mating behaviors such as mate choice are investigated.  相似文献   
59.
Autosomal dominant polycystic kidney disease (ADPKD), the most common inherited cause of kidney failure, is caused by mutations in either PKD1 (85%) or PKD2 (15%). The PKD2 protein, polycystin-2 (PC2 or TRPP2), is a member of the transient receptor potential (TRP) superfamily and functions as a non-selective calcium channel. PC2 has been found to form oligomers in native tissues suggesting that it may form functional homo- or heterotetramers with other subunits, similar to other TRP channels. Our experiments unexpectedly revealed that PC2 mutant proteins lacking the known C-terminal dimerization domain were still able to form oligomers and co-immunoprecipitate full-length PC2, implying the possible existence of a proximal dimerization domain. Using yeast two-hybrid and biochemical assays, we have mapped an alternative dimerization domain to the N terminus of PC2 (NT2-1-223, L224X). Functional characterization of this domain demonstrated that it was sufficient to induce cyst formation in zebrafish embryos and inhibit PC2 surface currents in mIMCD3 cells probably by a dominant-negative mechanism. In summary, we propose a model for PC2 assembly as a functional tetramer which depends on both C- and N-terminal dimerization domains. These results have significant implications for our understanding of PC2 function and disease pathogenesis in ADPKD and provide a new strategy for studying PC2 function.  相似文献   
60.
Several blue copper proteins are known to change the active site structure at alkaline pH (alkaline transition). Spectroscopic studies of Met16Phe, Met16Tyr, Met16Trp, and Met16Val pseudoazurin variants were performed to investigate the second sphere role through alkaline transition. The visible electronic absorption and resonance Raman spectra of Met16Phe, Met16Tyr, and Met16Trp variants showed the increasing of axial component at pH 11 like wild-type PAz. The visible electronic absorption and far-UV CD spectra of Met16Val demonstrated that the destabilization of the protein structure was triggered at pH > 11. Resonance Raman (RR) spectra of PAz showed that the intensity-weighted averaged Cu–S(Cys) stretching frequency was shifted to higher frequency region at pH 11. The higher frequency shift of Cu–S(Cys) bond is implied the stronger Cu–S(Cys) bond at alkaline transition pH 11. The visible electronic absorption and far-UV CD spectra of Met16X PAz revealed that the Met16Val variant is denatured at pH > 11, but Met16Phe, Met16Tyr, and Met16Trp mutant proteins are not denatured even at pH > 11. These observations suggest that Met16 is important to maintain the protein structure through the possible weak interaction between methionine –SCH3 part and coordinated histidine imidazole moiety. The introduction of π–π interaction in the second coordination sphere may be contributed to the enhancement of protein structure stability.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号