首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   428篇
  免费   25篇
  2021年   5篇
  2019年   3篇
  2018年   5篇
  2017年   6篇
  2016年   9篇
  2015年   8篇
  2014年   10篇
  2013年   20篇
  2012年   23篇
  2011年   31篇
  2010年   22篇
  2009年   11篇
  2008年   25篇
  2007年   24篇
  2006年   21篇
  2005年   15篇
  2004年   19篇
  2003年   14篇
  2002年   19篇
  2001年   9篇
  2000年   14篇
  1999年   3篇
  1997年   3篇
  1996年   4篇
  1995年   2篇
  1994年   2篇
  1993年   2篇
  1992年   3篇
  1991年   7篇
  1990年   7篇
  1989年   13篇
  1988年   8篇
  1987年   11篇
  1986年   9篇
  1985年   6篇
  1984年   5篇
  1983年   2篇
  1982年   2篇
  1979年   7篇
  1978年   3篇
  1975年   5篇
  1974年   2篇
  1973年   3篇
  1972年   5篇
  1971年   2篇
  1970年   3篇
  1969年   3篇
  1968年   4篇
  1967年   3篇
  1966年   4篇
排序方式: 共有453条查询结果,搜索用时 140 毫秒
401.
402.
Angioimmunoblastic T-cell lymphoma (AITL) and peripheral T-cell lymphoma, not otherwise specified (PTCL-NOS) are subtypes of T-cell lymphoma. Due to low tumor cell content and substantial reactive cell infiltration, these lymphomas are sometimes mistaken for other types of lymphomas or even non-neoplastic diseases. In addition, a significant proportion of PTCL-NOS cases reportedly exhibit features of AITL (AITL-like PTCL-NOS). Thus disagreement is common in distinguishing between AITL and PTCL-NOS. Using whole-exome and subsequent targeted sequencing, we recently identified G17V RHOA mutations in 60–70% of AITL and AITL-like PTCL-NOS cases but not in other hematologic cancers, including other T-cell malignancies. Here, we establish a sensitive detection method for the G17V RHOA mutation using a quantitative allele-specific polymerase chain reaction (qAS-PCR) assay. Mutated allele frequencies deduced from this approach were highly correlated with those determined by deep sequencing. This method could serve as a novel diagnostic tool for 60–70% of AITL and AITL-like PTCL-NOS.  相似文献   
403.
404.
Brain metabolism is thought to be maintained by neuronal-glial metabolic coupling. Glia take up glutamate from the synaptic cleft for conversion into glutamine, triggering glial glycolysis and lactate production. This lactate is shuttled into neurons and further metabolized. The origin and role of lactate in severe traumatic brain injury (TBI) remains controversial. Using a modified weight drop model of severe TBI and magnetic resonance (MR) spectroscopy with infusion of 13C-labeled glucose, lactate, and acetate, the present study investigated the possibility that neuronal-glial metabolism is uncoupled following severe TBI. Histopathology of the model showed severe brain injury with subarachnoid and hemorrhage together with glial cell activation and positive staining for Tau at 90 min post-trauma. High resolution MR spectroscopy of brain metabolites revealed significant labeling of lactate at C-3 and C-2 irrespective of the infused substrates. Increased 13C-labeled lactate in all study groups in the absence of ischemia implied activated astrocytic glycolysis and production of lactate with failure of neuronal uptake (i.e. a loss of glial sensing for glutamate). The early increase in extracellular lactate in severe TBI with the injured neurons rendered unable to pick it up probably contributes to a rapid progression toward irreversible injury and pan-necrosis. Hence, a method to detect and scavenge the excess extracellular lactate on site or early following severe TBI may be a potential primary therapeutic measure.  相似文献   
405.
In oxygenated cells, hypoxia-inducible factor-1 (HIF-1) alpha subunits are rapidly degraded by a mechanism that involves ubiquitination by the von Hippel-Lindau tumor suppressor E3 ligase complex using 2-oxoglutarate as a substrate. We examined the effect of 2-oxoglutarate on the production of erythropoietin and vascular endothelial growth factor (VEGF). The expression of erythropoietin and VEGF protein were dose-dependently downregulated in Hep3B cells by the addition of 2-oxoglutarate. The promoter activity of VEGF-luciferase was dose-dependently downregulated by the addition of 2-oxoglutarate. Gel mobility shift assays revealed that the addition of 2-oxoglutarate dose-dependently inhibited HIF-1 binding activity, but did not affect GATA binding activity. Western blot analysis revealed that 2-oxoglutarate dose-dependently inhibited the HIF-1alpha protein level in Hep3B cells in hypoxic conditions. However, MG132 (the proteasome inhibitor) rescued the inhibition of HIF-1alpha protein expression by 2-oxoglutarate. Furthermore, under hypoxic conditions, 2-oxoglutarate dose-dependently inhibited tube formation in in vitro angiogenesis assays. These results indicate that 2-oxoglutarate treatment may be useful for the inhibition of angiogenesis.  相似文献   
406.
407.
Immunocytological studies in this laboratory have suggested that NADH-dependent glutamate synthase (NADH-GOGAT; EC 1.4.1.14) in developing organs of rice (Oryza sativa L. cv. Sasanishiki) is involved in the utilization of glutamine remobilized from senescing organs through the phloem. Because most of the indica cultivars contained less NADH-GOGAT in their sink organs than japonica cultivars, over-expression of NADH-GOGAT gene from japonica rice was investigated using Kasalath, an indica cultivar. Several T0 transgenic Kasalath lines over-producing NADH-GOGAT under the control of a NADH-GOGAT promoter of Sasanishiki, a japonica rice, showed an increase in grain weight (80% as a maximum), indicating that NADH-GOGAT is indeed a key step for nitrogen utilization and grain filling in rice. A genetic approach using 98 backcross-inbred lines (BC(1)F(6)) developed between Nipponbare (a japonica rice) and Kasalath were employed to detect putative quantitative trait loci (QTLs) associated with the contents of cytosolic glutamine synthetase (GS1; EC 6.3.1.2), which is probably involved in the export of nitrogen from senescing organs and those of NADH-GOGAT. Immunoblotting analyses showed transgressive segregations toward lower or greater contents of these enzyme proteins in these BC(1)F(6). Seven chromosomal QTL regions were detected for GS1 protein content and six for NADH-GOGAT. Some of these QTLs were located in QTL regions for various biochemical and agronomic traits affected by nitrogen recycling. The relationships between the genetic variability of complex agronomic traits and traits for these two enzymes are discussed.  相似文献   
408.
Optical imaging offers high sensitivity and portability at low cost. The design of ‘smart’ or ‘activatable’ probes can decrease the background noise and increase the specificity of the signal. By conjugating a fluorescent dye and a compatible quencher on each side of an enzyme's substrate, the signal remains in its ‘off ’ state until it reaches the area where a specific enzyme is expressed. However, the signal can leak from that area unless the dye is attached to a molecule able to bind to a specific target also presented in that area. The aim of this study was to (i) specifically conjugate the quencher on the α‐amino group of the peptide's N‐terminus, (ii) conjugate the dye on the ε‐amino group of a lysine in C‐terminus, and (iii) conjugate the carboxyl group of the peptide's C‐terminus to an amino group present on an antibody, using carbodiimide chemistry. The use of protecting groups, such as Boc or Fmoc, to allow site‐specific conjugation, presents several drawbacks including ‘on beads labeling’, additional steps required for deprotection and removal from the resin, decreased yield, and dye degradation. A method of preferential labeling of α‐amino N‐terminal group in slightly acidic solution, proposed by Selo et al. (1996) has partially solved the problem. The present study reports improvements of the method allowing to (i) avoid the homo‐bilabeling, (ii) increase the yield of the N‐terminal labeling by two folds, and (iii) decrease the cost by 44‐fold. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   
409.
410.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号