首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   120篇
  免费   8篇
  2022年   1篇
  2021年   1篇
  2018年   2篇
  2016年   6篇
  2015年   4篇
  2014年   5篇
  2013年   5篇
  2012年   16篇
  2011年   11篇
  2010年   12篇
  2009年   6篇
  2008年   9篇
  2007年   6篇
  2006年   6篇
  2005年   9篇
  2004年   7篇
  2003年   3篇
  2002年   4篇
  2000年   1篇
  1999年   1篇
  1995年   1篇
  1994年   1篇
  1990年   2篇
  1986年   1篇
  1984年   1篇
  1979年   2篇
  1977年   1篇
  1975年   1篇
  1972年   1篇
  1966年   1篇
  1962年   1篇
排序方式: 共有128条查询结果,搜索用时 203 毫秒
11.
myo-Inositol-1-phosphate synthase (mIPS) catalyzes the conversion of glucose-6-phosphate (G-6-P) to inositol-1-phosphate. In the sulfate-reducing archaeon Archaeoglobus fulgidus it is a metal-dependent thermozyme that catalyzes the first step in the biosynthetic pathway of the unusual osmolyte di-myo-inositol-1,1'-phosphate. Several site-specific mutants of the archaeal mIPS were prepared and characterized to probe the details of the catalytic mechanism that was suggested by the recently solved crystal structure and by the comparison to the yeast mIPS. Six charged residues in the active site (Asp225, Lys274, Lys278, Lys306, Asp332, and Lys367) and two noncharged residues (Asn255 and Leu257) have been changed to alanine. The charged residues are located at the active site and were proposed to play binding and/or direct catalytic roles, whereas noncharged residues are likely to be involved in proper binding of the substrate. Kinetic studies showed that only N255A retains any measurable activity, whereas two other mutants, K306A and D332A, can carry out the initial oxidation of G-6-P and reduction of NAD+ to NADH. The rest of the mutant enzymes show major changes in binding of G-6-P (monitored by the 31P line width of inorganic phosphate when G-6-P is added in the presence of EDTA) or NAD+ (detected via changes in the protein intrinsic fluorescence). Characterization of these mutants provides new twists on the catalytic mechanism previously proposed for this enzyme.  相似文献   
12.
The thermal decomposition of methyl 4,6-O-benzylidene-2,3-di-O-[(methylthio)-thiocarbonyl]-α-d-glucopyranoside afforded methyl 4,6-O-benzylidene-2-thio-α-d-mannopyranoside 3-O,2-S-(S,S-dimethyl trithioorthocarbonate) and methyl 4,6-O-benzylidene-3-thio-α-d-allopyranoside 2-O,3-S-(S,S-dimethyl trithioorthocarbonate) in good yield. This decomposition can be generalized to 1,3-diols derived from sugars. Thus methyl 2,3-di-O-methyl-4,6-di-O-[(methylthio)thiocarbonyl]-α-d-glucopyranoside afforded in the same way the corresponding trithioorthocarbonates, following a regioselective process. The structures of these trithioorthocarbonates are confirmed by spectral and chemical proofs.  相似文献   
13.
Isolated internodes of Chara corallina have been used to study the gating of aquaporins (water channels) in the presence of high concentrations of osmotic solutes of different size (molecular weight). Osmolytes were acetone and three glycol ethers: ethylene glycol monomethyl ether (EGMME), diethylene glycol monomethyl ether (DEGMME), and triethylene glycol monoethyl ether (TEGMEE). The 'osmotic efficiency' of osmolytes was quite different. Their reflection coefficients ranged between 0.15 (acetone), 0.59 (EGMME), 0.78 (DEGMME), and 0.80 (TEGMEE). Bulk water permeability (Lp) and diffusive permeabilities (Ps) of heavy water (HDO), hydrogen peroxide (H2O2), acetone, and glycol ethers (EGMME, DEGMME, and TEGMEE) were measured using a cell pressure probe. Cells were treated with different concentrations of osmotic solutes of up to 800 mM ( approximately 2.0 MPa of osmotic pressure). Inhibition of aquaporin activity increased with both increasing concentration and size of solutes (reflection coefficients). As cell Lp decreased, Ps increased, indicating that water and solutes used different passages across the plasma membrane. Similar to earlier findings of an osmotic gating of ion channels, a cohesion/tension model of the gating of water channels in Chara internodes by high concentration is proposed. According to the model, tensions (negative pressures) within water channels affected the open/closed state by changing the free energy between states and favoured a distorted/collapsed rather than the open state. They should have differed depending on the concentration and size of solutes that are more or less excluded from aquaporins. The bigger the solute, the lower was the concentration required to induce a reversible closure of aquaporins, as predicted by the model.  相似文献   
14.
In between-subjects studies on two groups of women of the same age, we show that women assess male's facial attractiveness differently in the follicular (F) and luteal (L) phases. In the high conception risk phase (F), women tended to give higher scores to male faces than when they were in the luteal phase. During the five first days of the cycle, i.e. when the estrogen level is still low, women assessed men's facial attractiveness relatively highly. We suggest that it is progesterone in the luteal phase that is responsible for lower attractiveness assigned then to male faces. We also tested which anthropometric facial traits or indices influence male attractiveness. We found that assessments of attractiveness were correlated only with mouth height (positively) and the angle between the middle of the mouth and the middle of the eyes (negatively). The results are compared with those from other studies and discussed in the light of evolutionary biology.  相似文献   
15.
Epoxide metabolism in Xanthobacter autotrophicus Py2 results in the conversion of epoxypropane to acetoacetate. Epoxide metabolism is initiated by the nucleophilic addition of coenzyme M to the (R)- and (S)-enantiomers of epoxypropane which forms the respective enantiomers of 2-hydroxypropyl-coenyme M. The (R)- and (S)-enantiomers of 2-hydroxypropyl coenzyme are oxidized to the achiral product 2-ketopropyl-CoM by two stereoselective dehydrogenases. The dehydrogenases catalyzing these reactions, termed (R)-hydroxypropyl-coenzyme M dehydrogenase (R-HPCDH) and (S)-hydroxypropyl-coenzyme M dehydrogenase (S-HPCDH), are NAD(+)-dependent enzymes belonging to the short chain dehydrogenase/reductase (SDR) family of enzymes. In this study, the crystal structure of R-HPCDH cocrystallized in the presence of (S)-hydroxypropyl-coenzyme M has been determined using X-ray diffraction methods and refined to 1.8 A resolution. The structure of R-HPCDH is tetrameric and stabilized by the interaction of the terminal carboxylates of each subunit with divalent metal ions. The structure of the presumed product-bound state reveals that binding interactions between the negatively charged oxygen atoms of the sulfonate moiety have striking similarities to sulfonate interactions observed in the previously determined structure of 2-ketopropyl-CoM oxidoreductase/carboxylase, highlighting the utility of coenzyme M as a carrier molecule in the pathway. The key elements of the aforementioned interactions are electrostatic interactions between the sulfonate oxygen atoms and two arginine residues (R152 and R196) of R-HPCDH. The comparison of the structure of R-HPCDH with a homology model of S-HPCDH provides a structural basis for a mechanism of substrate specificity in which the binding of the substrate sulfonate moiety at distinct sites on each stereoselective enzyme directs the orientation of the appropriate substrate enantiomer for hydride abstraction.  相似文献   
16.
The structure of the mixed, enzyme-cofactor disulfide intermediate of ketopropyl-coenzyme M oxidoreductase/carboxylase has been determined by X-ray diffraction methods. Ketopropyl-coenzyme M oxidoreductase/carboxylase belongs to a family of pyridine nucleotide-containing flavin-dependent disulfide oxidoreductases, which couple the transfer of hydride derived from the NADPH to the reduction of protein cysteine disulfide. Ketopropyl-coenzyme M oxidoreductase/carboxylase, a unique member of this enzyme class, catalyzes thioether bond cleavage of the substrate, 2-ketopropyl-coenzyme M, and carboxylation of what is thought to be an enzyme-stabilized enolacetone intermediate. The mixed disulfide of 2-ketopropyl-coenzyme M oxidoreductase/carboxylase was captured through crystallization of the enzyme with the physiological products of the reaction, acetoacetate, coenzyme M, and NADP, and reduction of the crystals with dithiothreitol just prior to data collection. Density in the active-site environment consistent with acetone, the product of reductive decarboxylation of acetoacetate, was revealed in this structure in addition to a well-defined hydrophobic pocket or channel that could be involved in the access for carbon dioxide. The analysis of this structure and that of a coenzyme-M-bound form provides insights into the stabilization of intermediates, substrate carboxylation, and product release.  相似文献   
17.
Personality and temperament were hypothesized to function as important factors affecting life history strategies. Recent research has demonstrated the association between temperamental traits and reproduction in humans, however, the underlying mechanisms are still poorly understood. This study presents evidence for an association between temperamental traits and woman's fecundity, as indicated by levels of ovarian steroid hormones during the menstrual cycle. On a large sample of urban, reproductive age women (n = 108) we demonstrated that activity, endurance and emotional reactivity are associated with levels of estrogen and with a pattern of change of progesterone levels. Women high in activity, high in endurance and low in emotional reactivity had up to twice as high estradiol levels and more favorable progesterone profiles as women low in activity, low in endurance and high in emotional reactivity. The temperamental traits we measured highly overlap with extraversion, neuroticism and negative emotionality that were reported to correlate with reproductive success. Our findings thus suggest a possible explanation for these relationships, linking personality and women's reproductive success through a hormonal pathway.  相似文献   
18.
Swimming Escherichia coli cells are propelled by the rotary motion of their flagellar filaments. In the normal swimming pattern, filaments positioned randomly over the cell form a bundle at the posterior pole. It has long been assumed that the hook functions as a universal joint, transmitting rotation on the motor axis through up to ~90° to the filament in the bundle. Structural models of the hook have revealed how its flexibility is expected to arise from dynamic changes in the distance between monomers in the helical lattice. In particular, each of the 11 protofilaments that comprise the hook is predicted to cycle between short and long forms, corresponding to the inside and outside of the curved hook, once each revolution of the motor when the hook is acting as a universal joint. To test this, we genetically modified the hook so that it could be stiffened by binding streptavidin to biotinylated monomers, impeding their motion relative to each other. We found that impeding the action of the universal joint resulted in atypical swimming behavior as a consequence of disrupted bundle formation, in agreement with the universal joint model.  相似文献   
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号