首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22篇
  免费   2篇
  2021年   2篇
  2017年   1篇
  2016年   3篇
  2015年   1篇
  2014年   2篇
  2013年   2篇
  2011年   1篇
  2010年   1篇
  2009年   1篇
  2007年   1篇
  2006年   1篇
  2005年   2篇
  2004年   1篇
  2002年   1篇
  2001年   1篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
排序方式: 共有24条查询结果,搜索用时 15 毫秒
21.
This study examined the acute and long-term effects of two static stretching protocols of equal duration, performed either as a single stretch or multiple shorter duration repetitions on hip hyperextension range of motion (ROM) and single leg countermovement jump height (CMJ). Thirty female gymnasts were randomly assigned to stretching (SG) or control groups (CG). The SG performed two different protocols of static stretching, three times per week for 9 weeks. One leg performed repeated stretching (3 × 30 s with 30 s rest) while the other leg performed a single stretch (90 s). The CG continued regular training. ROM and CMJ were measured pre- and 2 min post-stretching on weeks 0, 3, 6, 9, and 3 weeks into detraining. CMJ height increased over time irrespective of group (main effect time, p = 0.001), with no statistical difference between groups (main effect group, p = 0.272). Three-way ANOVA showed that, CMJ height after stretching was not affected by either stretching protocol at any time point (p = 0.503 to 0.996). Both stretching protocols equally increased ROM on weeks 6 (10.9 ± 13.4%, p < 0.001, d = 0.42), and 9 (21.5 ± 13.4%, p < 0.001, d = 0.78), and this increase was maintained during detraining (17.0 ± 15.0%, p < 0.001, d = 0.68). No increase in ROM was observed in the CG (p > 0.874). Static stretching of long duration applied either as single or multiple bouts of equal duration, results in similar acute and long-term improvements in ROM. Furthermore, both stretching protocols do not acutely affect subsequent CMJ performance, and this effect is not influenced by the large increase in ROM and CMJ overtime.  相似文献   
22.
This study compared the effects of two different half-squat training programs on the repeated-sprint ability of soccer players during the preseason. Twenty male professional soccer players were divided into 2 groups: One group (S-group) performed 4 sets of 5 repetitions with 90% of their 1-repetition maximum (1RM), and the other group (H-group) performed 4 sets of 12 repetitions with 70% of 1RM, 3 times per week for 6 weeks, in addition to their common preseason training program. Repeated-sprint ability was assessed before and after training by 10 × 6-second cycle ergometer sprints separated by 24 seconds of passive recovery. Maximal half-squat strength increased significantly in both groups (p < 0.01), but this increase was significantly greater in the S-group compared with the H-group (17.3 ± 1.9 vs. 11.0 ± 1.9%, p < 0.05). Lean leg volume (LLV) increased only in the H-group. Total work over the 10 sprints improved in both groups after training, but this increase was significantly greater in the second half (8.9 ± 2.6%) compared with the first half of the sprint test (3.2 ± 1.7%) only in the S-group. Mean power output (MPO) expressed per liter of LLV was better maintained during the last 6 sprints posttraining only in the S-group, whereas there was no change in MPO per LLV in the H-group over the 10 sprints. These results suggest that resistance training with high loads is superior to a moderate-load program, because it increases strength without a change in muscle mass and also results in a greater improvement in repeated sprint ability. Therefore, resistance training with high loads may be preferable when the aim is to improve maximal strength and fatigue during sprinting in professional soccer players.  相似文献   
23.
A model for phosphocreatine resynthesis   总被引:1,自引:0,他引:1  
Nevill, Alan M., David A. Jones, David McIntyre, Gregory C. Bogdanis, and Mary E. Nevill. A model forphosphocreatine resynthesis. J. Appl.Physiol. 82(1): 329-335, 1997.A model for phosphocreatine (PCr) resynthesis is proposed based on a simple electric circuit, where the PCr store in muscle is likened to thestored charge on the capacitor. The solution to the second-order differential equation that describes the potential around the circuitsuggests the model for PCr resynthesis is given byPCr(t) = R  [d1 · exp(k1 · t) ± d2 · exp(k2 · t)],where R is PCr concentration at rest,d1,d2, k1, andk2 are constants, andt is time. By using nonlinear leastsquares regression, this double-exponential model was shown to fit thePCr recovery data taken from two studies involving maximal exerciseaccurately. In study 1, when themuscle was electrically stimulated while occluded, PCr concentrations rose during the recovery phase to a level above that observed at rest.In study 2, after intensive dynamicexercise, PCr recovered monotonically to resting concentrations. Thesecond exponential term in the double-exponential model was found tomake a significant additional contribution to the quality of fit inboth study 1 (P < 0.05) andstudy 2 (P < 0.01).

  相似文献   
24.
The control of cell cycle progression has been studied in asynchronous cultures using image analysis and time lapse techniques. This approach allows determination of the cycle phase and signaling properties of individual cells, and avoids the need for synchronization. In past studies this approach demonstrated that continuous cell cycle progression requires the induction of cyclin D1 levels by Ras, and that this induction takes place during G2 phase. These studies were designed to understand how Ras could induce cyclin D1 levels only during G2 phase. First, in studies with a Ras-specific promoter and cellular migration we find that endogenous Ras is active in all cell cycle phases of actively cycling NIH3T3 cells. This suggests that cyclin D1 induction during G2 phase is not the result of Ras activation specifically during this cell cycle period. To confirm this suggestion oncogenic Ras, which is expected to be active in all cell cycle phases, was microinjected into asynchronous cells. The injected protein induced cyclin D1 levels rapidly, but only in G2 phase cells. We conclude that in the continuously cycling cell the targets of Ras activity are controlled by cell cycle phase, and that this phenomenon is vital to cell cycle progression.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号