首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1440篇
  免费   82篇
  2022年   17篇
  2021年   28篇
  2020年   7篇
  2019年   27篇
  2018年   27篇
  2017年   27篇
  2016年   42篇
  2015年   78篇
  2014年   69篇
  2013年   90篇
  2012年   73篇
  2011年   109篇
  2010年   68篇
  2009年   61篇
  2008年   72篇
  2007年   89篇
  2006年   77篇
  2005年   61篇
  2004年   55篇
  2003年   44篇
  2002年   53篇
  2001年   29篇
  2000年   29篇
  1999年   22篇
  1998年   12篇
  1996年   8篇
  1995年   7篇
  1994年   7篇
  1992年   14篇
  1991年   12篇
  1990年   12篇
  1989年   15篇
  1988年   13篇
  1987年   12篇
  1986年   13篇
  1985年   14篇
  1984年   7篇
  1983年   11篇
  1981年   5篇
  1980年   9篇
  1979年   7篇
  1978年   6篇
  1977年   8篇
  1976年   5篇
  1975年   10篇
  1974年   4篇
  1972年   8篇
  1971年   7篇
  1970年   11篇
  1969年   4篇
排序方式: 共有1522条查询结果,搜索用时 15 毫秒
931.
932.
Preterm neonates are exposed at birth to high oxygen concentrations relative to the intrauterine environment. We have previously shown in a rat model that a hyperoxic insult results in a reduced nephron number in adulthood. Therefore, the aim of this study was to determine the effects of transient neonatal hyperoxia exposure on nephrogenesis. Sprague-Dawley rat pups were raised in 80% O2 or room air from P3 to P10. Pups (n = 12/group, 6 males and 6 females) were sacrificed at P5 (during active nephrogenesis) and at P10 (after the completion of nephrogenesis). Hyperoxia exposure resulted in a significant reduction in both nephrogenic zone width and glomerular diameter at P5, and a significantly increased apoptotic cell count; however, nephron number at P10 was not affected. HIF-1α expression in the developing kidney was significantly reduced following hyperoxia exposure. Systemic administration of the HIF-1α stabilizer dimethyloxalylglycine (DMOG) resulted in enhanced expression of HIF-1α and improved nephrogenesis: kidneys from hyperoxia-exposed pups treated with DMOG exhibited a nephrogenic zone width and glomerular diameter similar to room-air controls. These findings demonstrate that neonatal hyperoxia exposure results in impaired nephrogenesis, which may be at least in part HIF-1α-mediated. Although nephron number was not significantly reduced at the completion of nephrogenesis, early indicators of maldevelopment suggest the potential for accelerated nephron loss in adulthood. Overall, this study supports the premise that prematurely born neonates exposed to high oxygen levels after birth are vulnerable to impaired renal development.  相似文献   
933.
934.
935.
Telocytes (TCs) are a unique type of interstitial cells with specific, extremely long prolongations named telopodes (Tps). Our previous study showed that TCs are distinct from fibroblasts (Fbs) and mesenchymal stem cells (MSCs) as concerns gene expression and proteomics. The present study explores patterns of mouse TC‐specific gene profiles on chromosome 1. We investigated the network of main genes and the potential functional correlations. We compared gene expression profiles of mouse pulmonary TCs, MSCs, Fbs, alveolar type II cells (ATII), airway basal cells (ABCs), proximal airway cells (PACs), CD8+ T cells from bronchial lymph nodes (T‐BL) and CD8+ T cells from lungs (T‐LL). The functional and feature networks were identified and compared by bioinformatics tools. Our data showed that on TC chromosome 1, there are about 25% up‐regulated and 70% down‐regulated genes (more than onefold) as compared with the other cells respectively. Capn2, Fhl2 and Qsox1 were over‐expressed in TCs compared to the other cells, indicating that biological functions of TCs are mainly associated with morphogenesis and local tissue homoeostasis. TCs seem to have important roles in the prevention of tissue inflammation and fibrogenesis development in lung inflammatory diseases and as modulators of immune cell response. In conclusion, TCs are distinct from the other cell types.  相似文献   
936.
The E3 ubiquitin ligase MYCBP2 negatively regulates neuronal growth, synaptogenesis, and synaptic strength. More recently it was shown that MYCBP2 is also involved in receptor and ion channel internalization. We found that mice with a MYCBP2-deficiency in peripheral sensory neurons show prolonged thermal hyperalgesia. Loss of MYCBP2 constitutively activated p38 MAPK and increased expression of several proteins involved in receptor trafficking. Surprisingly, loss of MYCBP2 inhibited internalization of transient receptor potential vanilloid receptor 1 (TRPV1) and prevented desensitization of capsaicin-induced calcium increases. Lack of desensitization, TRPV internalization and prolonged hyperalgesia were reversed by inhibition of p38 MAPK. The effects were TRPV-specific, since neither mustard oil-induced desensitization nor behavioral responses to mechanical stimuli were affected. In summary, we show here for the first time that p38 MAPK activation can inhibit activity-induced ion channel internalization and that MYCBP2 regulates internalization of TRPV1 in peripheral sensory neurons as well as duration of thermal hyperalgesia through p38 MAPK.  相似文献   
937.
The antitumor agent 11β (CAS 865070-37-7), consisting of a DNA-damaging aniline mustard linked to an androgen receptor (AR) ligand, is known to form covalent DNA adducts and to induce apoptosis potently in AR-positive prostate cancer cells in vitro; it also strongly prevents growth of LNCaP xenografts in mice. The present study describes the unexpectedly strong activity of 11β against the AR-negative HeLa cells, both in cell culture and tumor xenografts, and uncovers a new mechanism of action that likely explains this activity. Cellular fractionation experiments indicated that mitochondria are the major intracellular sink for 11β; flow cytometry studies showed that 11β exposure rapidly induced oxidative stress, mitochondria being an important source of reactive oxygen species (ROS). Additionally, 11β inhibited oxygen consumption both in intact HeLa cells and in isolated mitochondria. Specifically, 11β blocked uncoupled oxygen consumption when mitochondria were incubated with complex I substrates, but it had no effect on oxygen consumption driven by substrates acting downstream of complex I in the mitochondrial electron transport chain. Moreover, 11β enhanced ROS generation in isolated mitochondria, suggesting that complex I inhibition is responsible for ROS production. At the cellular level, the presence of antioxidants (N-acetylcysteine or vitamin E) significantly reduced the toxicity of 11β, implicating ROS production as an important contributor to cytotoxicity. Collectively, our findings establish complex I inhibition and ROS generation as a new mechanism of action for 11β, which supplements conventional DNA adduct formation to promote cancer cell death.  相似文献   
938.
939.
Zinc accumulates in the synaptic vesicles of certain glutamatergic forebrain neurons and modulates neuronal excitability and synaptic plasticity by multiple poorly understood mechanisms. Zinc directly inhibits NMDA-sensitive glutamate-gated channels by two separate mechanisms: high-affinity binding to N-terminal domains of GluN2A subunits reduces channel open probability, and low-affinity voltage-dependent binding to pore-lining residues blocks the channel. Insight into the high-affinity allosteric effect has been hampered by the receptor's complex gating; multiple, sometimes coupled, modulatory mechanisms; and practical difficulties in avoiding transient block by residual Mg2+. To sidestep these challenges, we examined how nanomolar zinc concentrations changed the gating kinetics of individual block-resistant receptors. We found that block-insensitive channels had lower intrinsic open probabilities but retained high sensitivity to zinc inhibition. Binding of zinc to these receptors resulted in longer closures and shorter openings within bursts of activity but had no effect on interburst intervals. Based on kinetic modeling of these data, we conclude that zinc-bound receptors have higher energy barriers to opening and less stable open states. We tested this model for its ability to predict zinc-dependent changes in macroscopic responses and to infer the impact of nanomolar zinc concentrations on synaptic currents mediated by 2A-type NMDA receptors.  相似文献   
940.
Carvedilol, a third generation non-selective adrenoreceptor blocker, is widely used in cardiology. Its action has been proven to reach beyond adrenergic antagonism and involves multiple biological mechanisms. The interaction between carvedilol and endogenous 'gasotransmitter' hydrogen sulfide (H2S) is unknown. The aim of the study is to assess the influence of carvedilol on the H2S tissue level in mouse brain, liver, heart and kidney. Twenty eight SJL strain female mice were administered intraperitoneal injections of 2.5 mg/kg b.w./d (group D1, n=7), 5 mg/kg b.w./d (group D2, n=7) or 10 mg/kg b.w./d of carvedilol (group D3, n=7). The control group (n=7) received physiological saline in portions of the same volume (0.2 ml). Measurements of the free tissue H2S concentrations were performed according to the modified method of Siegel. A progressive decline in H2S tissue concentration along with an increase in carvedilol dose was observed in the brain (12.5%, 13.7% and 19.6%, respectively). Only the highest carvedilol dose induced a change in H2S tissue level in the heart - an increase by 75.5%. In the liver medium and high doses of carvedilol increased the H2S level by 48.1% and 11.8%, respectively. In the kidney, group D2 showed a significant decrease of H2S tissue level (22.5%), while in the D3 group the H2S concentration increased by 12.9%. Our study has proven that carvedilol affects H2S tissue concentration in different mouse organs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号