首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2190篇
  免费   124篇
  2023年   11篇
  2022年   23篇
  2021年   50篇
  2020年   34篇
  2019年   48篇
  2018年   96篇
  2017年   80篇
  2016年   100篇
  2015年   123篇
  2014年   114篇
  2013年   193篇
  2012年   181篇
  2011年   235篇
  2010年   134篇
  2009年   96篇
  2008年   90篇
  2007年   91篇
  2006年   78篇
  2005年   45篇
  2004年   53篇
  2003年   52篇
  2002年   48篇
  2001年   21篇
  2000年   31篇
  1999年   17篇
  1998年   22篇
  1997年   7篇
  1996年   14篇
  1995年   13篇
  1994年   10篇
  1993年   13篇
  1992年   15篇
  1991年   8篇
  1990年   11篇
  1989年   6篇
  1988年   5篇
  1987年   7篇
  1986年   8篇
  1985年   13篇
  1984年   12篇
  1983年   8篇
  1982年   4篇
  1981年   9篇
  1980年   13篇
  1978年   9篇
  1977年   7篇
  1976年   6篇
  1975年   8篇
  1965年   4篇
  1955年   3篇
排序方式: 共有2314条查询结果,搜索用时 312 毫秒
151.
152.
RNA recognition motif (RRM) domains bind both nucleic acids and proteins. Several proteins that contain two closely spaced RRM domains were previously found in protein complexes formed by the cap region of human topoisomerase I, a nuclear enzyme responsible for DNA relaxation or phosphorylation of SR splicing proteins. To obtain molecular insight into specific interactions between the RRM proteins and the cap region of topo I we examined their binary interactions using the yeast two-hybrid system. The interactions were established for hnRNP A1, p54(nrb) and SF2/ASF, but not for hnRNP L or HuR. To identify the amino acid pattern responsible for binding, experimental mutagenesis was employed and computational modelling of these processes was carried out. These studies revealed that two RRM domains and six residues of the consensus sequence are required for the binding to the cap region. On the basis of the above data, a structural model for the hnRNP A1-topoisomerase I complex was proposed. The main component of the hnRNP A1 binding site is a hydrophobic pocket on the beta-surface of the first RRM domain, similar to that described for Y14 protein interacting with Mago. We demonstrated that the interaction between RRM domains and the cap region was important for the kinase reaction catalyzed by topoisomerase I. Together with the previously described inhibitory effect of RRM domains of SF2/ASF on DNA cleavage, the above suggests that the binding of RRM proteins could regulate the activity of topoisomerase I.  相似文献   
153.
154.
Grb10 is a pleckstrin homology and Src homology 2 domain-containing protein that interacts with a number of phosphorylated receptor tyrosine kinases, including the insulin receptor. In mice, Grb10 gene expression is imprinted with maternal expression in all tissues except the brain. While the interaction between Grb10 and the insulin receptor has been extensively investigated in cultured cells, whether this adaptor protein plays a positive or negative role in insulin signaling and action remains controversial. In order to investigate the in vivo role of Grb10 in insulin signaling and action in the periphery, we generated Grb10 knockout mice by the gene trap technique and analyzed mice with maternal inheritance of the knockout allele. Disruption of Grb10 gene expression in peripheral tissues had no significant effect on fasting glucose and insulin levels. On the other hand, peripheral-tissue-specific knockout of Grb10 led to significant overgrowth of the mice, consistent with a role for endogenous Grb10 as a growth suppressor. Loss of Grb10 expression in insulin target tissues, such as skeletal muscle and fat, resulted in enhanced insulin-stimulated Akt and mitogen-activated protein kinase phosphorylation. Hyperinsulinemic-euglycemic clamp studies revealed that disruption of Grb10 gene expression in peripheral tissues led to increased insulin sensitivity. Taken together, our results provide strong evidence that Grb10 is a negative regulator of insulin signaling and action in vivo.  相似文献   
155.
Protein kinase CK2 is a highly conserved Ser/Thr protein kinase that is ubiquitous among eucaryotic organisms and appears to play an important role in many cellular functions. This enzyme in yeast has a tetrameric structure composed of two catalytic (α and/or α′) subunits and two regulatory β and β′ subunits. Previously, we have reported isolation from yeast cells four active forms of CK2, composed of αα′ββ′, α2ββ′, α′2ββ′ and a free α′-catalytic subunit. Now, we report that in Saccharomyces cerevisiae CK2 holoenzyme regulatory β subunit cannot substitute other β′ subunit and only both of them can form fully active enzymatic unit. We have examined the subunit composition of tetrameric complexes of yeast CK2 by transformation of yeast strains containing single deletion of the β or β′ regulatory subunits with vectors carrying lacking CKB1 or CKB2 genes. CK2 holoenzyme activity was restored only in cases when both of them were present in the cell. Additional, co-immunoprecypitation experiments show that polyadenylation factor Fip1 interacts with catalytic α subunits of CK2 and interaction with beta subunits in the holoenzyme decreases CK2 activity towards this protein substrate. These data may help to elucidate the role of yeast protein kinase CK2β/β′ subunits in the regulation of holoenzyme assembly and phosphotransferase activity.  相似文献   
156.
157.
The fate of benzene, ethylbenzene, toluene, xylenes (BTEX) compounds through biodegradation was investigated using two different bacteria, Ralstonia picketti (BP-20) and Alcaligenes piechaudii (CZOR L-1B). These bacteria were isolated from extremely polluted soils contaminated with petroleum hydrocarbons. PCR and Fatty Acid Methyl Ester (FAME) were used to identify the isolates. In this study, BTEX biodegradation, applied as a mixture or as individual compounds by the bacteria was evaluated. Both bacteria were shown to degrade each of the BTEX compounds individually and in mixture. However, Alcaligenes piechaudii was a better degrader of BTEXs both in the mixture and individually. Differences between BTEX biodegradation in the mixture and individually were observed, especially in the case of benzene. The degradation of all BTEXs in the mixture was lower than the degradation of individual compounds for both bacteria tested. In the all experiments, toluene and m + p- xylenes were better removed than the other BTEXs. No intermediates of biodegradation were detected. Biosurfactant production was observed by culture techniques. In addition, 3-hydroxy fatty acids, important in biosurfactant production, were observed by FAME analysis. The test results indicate that the bacteria could contribute to bioremediation of aromatic hydrocarbon pollution.  相似文献   
158.
Proteins in bovine milk are a common source of bioactive peptides. The peptides are released by the digestion of caseins and whey proteins. In vitro the bioactive peptide beta-casomorphin 7 (BCM-7) is yielded by the successive gastrointestinal proteolytic digestion of bovine beta-casein variants A1 and B, but this was not seen in variant A2. In hydrolysed milk with variant A1 of beta-casein, BCM-7 level is 4-fold higher than in A2 milk. Variants A1 and A2 of beta-casein are common among many dairy cattle breeds. A1 is the most frequent in Holstein-Friesian (0.310-0.660), Ayrshire (0.432-0.720) and Red (0.710) cattle. In contrast, a high frequency of A2 is observed in Guernsey (0.880-0.970) and Jersey (0.490-0.721) cattle. BCM-7 may play a role in the aetiology of human diseases. Epidemiological evidence from New Zealand claims that consumption of beta-casein A1 is associated with higher national mortality rates from ischaemic heart disease. It seems that the populations that consume milk containing high levels of beta-casein A2 have a lower incidence of cardiovascular disease and type 1 diabetes. BCM-7 has also been suggested as a possible cause of sudden infant death syndrome. In addition, neurological disorders, such as autism and schizophrenia, seem to be associated with milk consumption and a higher level of BCM-7. Therefore, careful attention should be paid to that protein polymorphism, and deeper research is needed to verify the range and nature of its interactions with the human gastrointestinal tract and whole organism.  相似文献   
159.
Body weight is one of the most important traits in any genetic improvement program in geese for at least 2 reasons. First, measurements of the trait are very easy. Second, body weight is correlated with a number of other meat performance traits. However, the genetic background of body weight shows considerable complexity. Three genetic models (with direct, maternal genetic and permanent maternal environmental effects) were employed in this study. Records of 3076 individuals of maternal strain W11 and 2656 individuals of paternal strain W33 over 6 consecutive generations, kept in the pedigree farm of Ko?uda Wielka, were analysed. Body weight (in kilograms) was measured in weeks 8 (BW8) and 11 (BW11). The inbreeding levels in both populations were relatively low (0.14% and 0.02% for W11 and W33, respectively), therefore these effects were not included in the linear models to estimate genetic parameters. Three fixed effects (hatch period, sex and year) were included in each linear model. Two criteria (AIC, BIC) were used to check the goodness of fit of the models. The computations were performed by WOMBAT software. In general, the genetic parameter estimates varied across the traits, models and strains studied. Direct additive heritability estimates ranged from 0.0001 (for BW11 of W33) to 0.55 (for BW11 of W33). Maternal and total heritabilities were also variable. Estimates of ratios of direct-maternal effect covariance in phenotypic variance were both positive and negative, but they were negligible, whereas ratios of the permanent environmental maternal variance to phenotypic variance were close to zero. Both of the applied criteria of model adequacy indicate that the model with maternal genetic and environmental effects should be considered as optimal. Genetic trends were close to zero. It seems that they were influenced by long-term selection. Similar tendencies have been observed for phenotypic trends, as well.  相似文献   
160.
To determine the effect of prenatal lead exposure on brain monoaminergic systems, pregnant rats were given tap water containing 250 ppm lead acetate, for the duration of pregnancy, while tap water without lead (Pb2+) was substituted at birth. Control rats were derived from dams that consumed tap water during pregnancy, and had no exposure to lead afterwards. At 12 weeks after birth, Pb2+ content of brain cortex was increased 3- to 4-fold (P < 0.05). At this time the endogenous striatal levels of 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid were 19% lower in Pb2+ exposed rats (P < 0.05), while there was no change in the striatal level of dopamine (DA), noradrenaline, 3,4-dihydroxyphenylglycol, serotonin (5-HT) and 5-hydroxyindoleacetic acid (HPLC/ED). Also there was no change in these monoamines and metabolites in the prefrontal cortex of Pb2+ exposed rats. However, turnover of 5-HT in prefrontal cortex, as indicated by 5-hydroxytryptophan accumulation 30 min after acute treatment with the decarboxylase inhibitor NSD-1015 (100 mg/kg IP), was lower in the Pb2+ exposed rats. In the striatum AMPH-induced (1 mg/kg IP) turnover of DA, evidenced as L-DOPA accumulation after NSD-1015, was increased to a lesser extent in the Pb2+ exposed rats (P < 0.05). The nitric oxide synthase inhibitor 7-nitroindazole (10 mg/kg IP) attenuated the latter effect, indicating that neuronal NO mediates this AMPH effect, at least in part. Moreover, DA D2 receptor sensitivity developed in Pb2+ exposed rats, as evidenced by enhanced quinpirole-induced yawning activity and enhanced quinpirole-induced locomotor activity (each, P < 0.05). These findings indicate that ontogenetic exposure to lead can have consequences on monoaminergic neuronal function at an adult stage of life, generally promoting accentuated behavioral effects of direct and indirect monoaminergic agonists, and related to increased dopamine turnover in basal ganglia. Special issue dedicated to Dr. Moussa Youdim.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号