首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   145篇
  免费   19篇
  164篇
  2023年   1篇
  2022年   1篇
  2021年   8篇
  2020年   2篇
  2019年   2篇
  2018年   2篇
  2017年   5篇
  2016年   1篇
  2015年   9篇
  2014年   7篇
  2013年   5篇
  2012年   12篇
  2011年   6篇
  2010年   7篇
  2009年   9篇
  2008年   6篇
  2007年   13篇
  2006年   2篇
  2005年   3篇
  2003年   1篇
  2002年   1篇
  2001年   6篇
  2000年   7篇
  1999年   6篇
  1998年   8篇
  1997年   4篇
  1996年   5篇
  1995年   3篇
  1993年   3篇
  1991年   1篇
  1987年   1篇
  1986年   1篇
  1984年   2篇
  1983年   1篇
  1982年   1篇
  1981年   3篇
  1980年   1篇
  1979年   1篇
  1978年   2篇
  1976年   1篇
  1974年   1篇
  1968年   1篇
  1966年   1篇
  1965年   1篇
排序方式: 共有164条查询结果,搜索用时 10 毫秒
21.
The mechanisms responsible for the increased basal rates of progesterone secretion from large steroidogenic luteal cells (LLC) relative to small steroidogenic luteal cells (SLC) have not been clearly defined. To determine if protein kinase A (PKA) is tonically active in LLC, the adenylate cyclase activator forskolin and a specific PKA inhibitor (PKI) were utilized in a 2 x 2 factorial treatment with each steroidogenic cell type. Progesterone and cAMP production were quantified after the different treatments. In addition, the effects of the treatments on the concentrations and relative phosphorylation status of the steroidogenic acute regulatory (STAR) protein in the two cell types were determined as a measure of PKA activity. Treatment with PKI blocked forskolin-induced increases in progesterone secretion by SLC without affecting the production of cAMP. The treatment of LLC with PKI significantly decreased basal progesterone secretion in the presence or absence of forskolin, indicating that the high level of steroidogenesis in this cell type requires PKA activity. There were no differences in the steady-state concentrations of STAR protein in either cell type after treatment. However, the percentage of relative STAR phosphorylation was higher in the LLC than in SLC, and PKI treatment significantly decreased the phosphorylation of STAR in the LLC. The relative phosphorylation status of STAR and the concentrations of progesterone in the media were significantly correlated with the treatments in both cell types. The amount of progesterone secreted per picogram of cAMP was higher in the LLC than in the SLC, and this was accompanied by a significant increase in the ratio of relative STAR phosphorylation to the steady-state concentration of STAR protein. These data are compatible with the theory that LLC are constitutively steroidogenic, partly because they have tonically active PKA. In addition, the phosphorylation of STAR appears to be a primary activity of PKA in both types of ovine steroidogenic luteal cells.  相似文献   
22.
This study confirms the presence of two species of the non‐native mosquitofish Gambusia in Argentina. The risks that they represent to native biota, their potential dispersal in the region, and their effectiveness in mosquito larvae control are discussed.  相似文献   
23.
Type 2 diabetes is caused by defects in both insulin sensitivity and insulin secretion. Glucose triggers insulin secretion by causing exocytosis of insulin granules from pancreatic β‐cells. High circulating cholesterol levels and a diminished capacity of serum to remove cholesterol from β‐cells are observed in diabetic individuals. Both of these effects can lead to cholesterol accumulation in β‐cells and contribute to β‐cell dysfunction. However, the molecular mechanisms by which cholesterol accumulation impairs β‐cell function remain largely unknown. Here, we used total internal reflection fluorescence microscopy to address, at the single‐granule level, the role of cholesterol in regulating fusion pore dynamics during insulin exocytosis. We focused particularly on the effects of cholesterol overload, which is relevant to type 2 diabetes. We show that excess cholesterol reduced the number of glucose‐stimulated fusion events, and modulated the proportion of full fusion and kiss‐and‐run fusion events. Analysis of single exocytic events revealed distinct fusion kinetics, with more clustered and compound exocytosis observed in cholesterol‐overloaded β‐cells. We provide evidence for the involvement of the GTPase dynamin, which is regulated in part by cholesterol‐induced phosphatidylinositol 4,5‐bisphosphate enrichment in the plasma membrane, in the switch between full fusion and kiss‐and‐run fusion. Characterization of insulin exocytosis offers insights into the role that elevated cholesterol may play in the development of type 2 diabetes.  相似文献   
24.
Recently, we discovered that nicotinamide riboside and nicotinic acid riboside are biosynthetic precursors of NAD+, which are utilized through two pathways consisting of distinct enzymes. In addition, we have shown that exogenously supplied nicotinamide riboside is imported into yeast cells by a dedicated transporter, and it extends replicative lifespan on high glucose medium. Here, we show that nicotinamide riboside and nicotinic acid riboside are authentic intracellular metabolites in yeast. Secreted nicotinamide riboside was detected with a biological assay, and intracellular levels of nicotinamide riboside, nicotinic acid riboside, and other NAD+ metabolites were determined by a liquid chromatography-mass spectrometry method. A biochemical genomic screen indicated that three yeast enzymes possess nicotinamide mononucleotide 5′-nucleotidase activity in vitro. Metabolic profiling of knock-out mutants established that Isn1 and Sdt1 are responsible for production of nicotinamide riboside and nicotinic acid riboside in cells. Isn1, initially classified as an IMP-specific 5′-nucleotidase, and Sdt1, initially classified as a pyrimidine 5′-nucleotidase, are additionally responsible for dephosphorylation of pyridine mononucleotides. Sdt1 overexpression is growth-inhibitory to cells in a manner that depends on its active site and correlates with reduced cellular NAD+. Expression of Isn1 protein is positively regulated by the availability of nicotinic acid and glucose. These results reveal unanticipated and highly regulated steps in NAD+ metabolism.  相似文献   
25.
There is a need for safe medications that can effectively support recovery by treating symptoms of protracted abstinence that may precipitate relapse in alcoholics, e.g. craving and disturbances in sleep and mood. This proof-of-concept study reports on the effectiveness of gabapentin 1200 mg for attenuating these symptoms in a non-treatment-seeking sample of cue-reactive, alcohol-dependent individuals. Subjects were 33 paid volunteers with current Diagnostic and Statistical Manual of Mental Disorders-IV alcohol dependence and a strength of craving rating 1 SD or greater for alcohol than water cues. Subjects were randomly assigned to gabapentin or placebo for 1 week and then participated in a within-subjects trial where each was exposed to standardized sets of pleasant, neutral and unpleasant visual stimuli followed by alcohol or water cues. Gabapentin was associated with significantly greater reductions than placebo on several measures of subjective craving for alcohol as well as for affectively evoked craving. Gabapentin was also associated with significant improvement on several measures of sleep quality. Side effects were minimal, and gabapentin effects were not found to resemble any major classes of abused drugs. Results suggest that gabapentin may be effective for treating the protracted abstinence phase in alcohol dependence and that a randomized clinical trial would be an appropriate next step. The study also suggests the value of cue-reactivity studies as proof-of-concept screens for potential antirelapse drugs.  相似文献   
26.
The peculiarities of thermal denaturation and interaction with water of the cycle-3 mutant of green fluorescent protein (GFP) were analyzed by NMR techniques and compared with those of bovine carbonic anhydrase II (BCA-II). Irreversible thermal denaturation was accompanied by massive GFP aggregation with no detectable accumulation of soluble denatured protein. Analysis of the spin diffusion data suggested that the internal part of the GFP β-can is involved in intensive interactions with water molecules. As a result, at high temperatures, the GFP structure does not unfold but rather breaks, consequently leading to enhanced protein aggregation. This is very different from typical BCA-II behavior.  相似文献   
27.
In arid regions, spring-fed habitats are frequently the only year-round source of surface water and are essential habitats for aquatic organisms and primary water sources for terrestrial animals and human settlements. While these habitats have been relatively well-studied in some regions, those of the southern Sonoran Desert have received little attention. In 2008 and 2009, we documented the biodiversity of aquatic animals at 19 sites across three arid mountain ranges in Sonora, Mexico, characterized macrohabitat types, examined seasonal variation in aquatic invertebrate communities, and explored the effects of an exotic fish (tilapia) on native communities. We documented >220 aquatic animal species, including several new species and range extensions for others. Macrohabitat type (oasis, tinaja, riffle, and seep) was more important than geographic location in structuring aquatic invertebrate communities at the scale of our study area (~9,000 km2). We found little evidence of predictable seasonal variation in invertebrate communities, despite dramatic hurricane-induced flooding. Aquatic vertebrates were not diverse across the study region (4 amphibian species and 2 species each of fishes and reptiles), but were often locally abundant. Presence of non-native tilapia at one site was associated with reduced abundances of native leopard frogs and reduced richness and density of native aquatic invertebrates. The most pressing aquatic habitat conservation concerns in the region, as in other deserts, are groundwater withdrawal, unmanaged recreational visitation, and the introduction of exotic species. Spring-fed habitats around the world have been called hotspots of freshwater biodiversity, and those of the Sonoran Desert are no exception.  相似文献   
28.
Because the calmodulin in postsynaptic densities (PSDs) activates a cyclic nucleotide phosphodiesterase, we decided to explore the possibility that the PSD also contains a calmodulin-activatable protein kinase activity. As seen by autoradiographic analysis of coomassie blue-stained SDS polyacrylamide gels, many proteins in a native PSD preparation were phosphorylated in the presence of [γ-(32)P]ATP and Mg(2+) alone. Addition of Ca(2+) alone to the native PSD preparation had little or no effect on phosphorylation. However, upon addition of exogenous calmodulin there was a general increase in background phosphorylation with a statistically significant increase in the phosphorylation of two protein regions: 51,000 and 62,000 M(r). Similar results were also obtained in sonicated or freeze thawed native PSD preparations by addition of Ca(2+) alone without exogenous calmodulin, indicating that the calmodulin in the PSD can activate the kinase present under certain conditions. The calmodulin dependency of the reaction was further strengthened by the observed inhibition of the calmodulin-activatable phosphorylation, but not of the Mg(2+)-dependent activity, by the Ca(2+) chelator, EGTA, which also removes the calmodulin from the structure (26), and by the binding to calmodulin of the antipsychotic drug chlorpromazine in the presence of Ca(2+). In addition, when a calmodulin-deficient PSD preparation was prepared (26), sonicated, and incubated with [γ-(32)P]ATP, Mg(2+) and Ca(2+), one could not induce a Ca(2+)-stimulation of protein kinase activity unless exogenous calmodulin was added back to the system, indicating a reconstitution of calmodulin into the PSD. We have also attempted to identify the two major phosphorylated proteins. Based on SDS polyacrylamide gel electrophoresis, it appears that the major 51,000 M(r) PSD protein is the one that is phosphorylated and not the 51,000 M(r) component of brain intermediate filaments, which is a known PSD contaminant. In addition, papain digestion of the 51,000 M(r) protein revealed multiple phosphorylation sites different from those phosphorylated by the Mg(2+)-dependent kinase(s). Finally, although the calmodulin-activatable protein kinase may phosphorylate proteins I(a) and I(b), the cyclic AMP-dependent protein kinase, which definitely does phosphorylate protein I(a) and I(b) and is present in the PSD, does not phosphorylate the 51,000 and 62,000 M(r) proteins, because specific inhibition of this kinase has no effect on the levels of the phosphorylation of these latter two proteins.  相似文献   
29.
CTP:phosphocholine cytidylyltransferase (CCT) is a multi-domain enzyme that regulates phosphatidylcholine synthesis. It converts to an active form upon binding cell membranes, and interdomain dissociations have been hypothesized to accompany this process. To identify these interdomain and membrane interactions, the tertiary structures of three forms of CCTalpha were probed by monitoring accessibility to proteases. Time-limited digestion with chymotrypsin or arginine C of soluble CCTalpha (CCT(sol)), phospholipid vesicle-bound CCT (CCT(mem)), and a soluble constitutively active CCT truncated at amino acid 236 generated complex mixtures of peptides that were resolved and identified by gel electrophoresis/immunoblotting and by matrix-assisted laser desorption/ionization-mass spectrometry, with or without coupling to capillary liquid chromatography. Identification of cleavage sites enabled assembly of peptide bond accessibility maps for each CCT form. Our results reveal a approximately 80-residue core within the catalytic domain (domain C) as the most inaccessible region in all three forms and the C-terminal phosphorylation domain as the most accessible. Membrane binding has little effect on the protease accessibility of these domains. To map the protease sites onto the catalytic domain, its three-dimensional structure was modeled from the atomic coordinates of glycerol-phosphate cytidylyltransferase (Protein Data Bank code 1COZ). The protease inaccessibility of most sites in domain C could be explained by burial or location within secondary structural elements. The accessibility of the N-terminal domain (domain N) was enhanced upon membrane binding. Residues Phe(234)-Leu(303) were inaccessible in CCT(mem), suggesting burial in the membrane. Surprisingly, residues Leu(274)-Leu(303) of this domain were also inaccessible in CCT(sol). We propose that this region is buried by interdomain contacts with domain N in CCT(sol). Membrane binding and burial of domain M in the lipid bilayer may disrupt this interaction, leading to increased exposure of sites in domain N.  相似文献   
30.
CCR5-utilizing (R5) and CXCR4-utilizing (X4) strains of human immunodeficiency virus type 1 (HIV-1) have been studied intensively in vitro, but the pathologic correlates of such differential tropism in vivo remain incompletely defined. In this study, X4 and R5 strains of HIV-1 were compared for tropism and pathogenesis in SCID-hu Thy/Liv mice, an in vivo model of human thymopoiesis. The X4 strain NL4-3 replicates quickly and extensively in thymocytes in the cortex and medulla, causing significant depletion. In contrast, the R5 strain Ba-L initially infects stromal cells including macrophages in the thymic medulla, without any obvious pathologic consequence. After a period of 3 to 4 weeks, Ba-L infection slowly spreads through the thymocyte populations, occasionally culminating in thymocyte depletion after week 6 of infection. During the entire time of infection, Ba-L did not mutate into variants capable of utilizing CXCR4. Therefore, X4 strains are highly cytopathic after infection of the human thymus. In contrast, infection with R5 strains of HIV-1 can result in a two-phase process in vivo, involving apparently nonpathogenic replication in medullary stromal cells followed by cytopathic replication in thymocytes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号