首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   110篇
  免费   17篇
  2021年   2篇
  2020年   2篇
  2019年   1篇
  2017年   2篇
  2016年   2篇
  2015年   5篇
  2014年   7篇
  2013年   4篇
  2012年   9篇
  2011年   8篇
  2010年   9篇
  2009年   3篇
  2008年   3篇
  2007年   5篇
  2006年   1篇
  2005年   4篇
  2004年   7篇
  2003年   4篇
  2002年   3篇
  2001年   6篇
  2000年   10篇
  1999年   4篇
  1998年   3篇
  1997年   1篇
  1996年   7篇
  1995年   3篇
  1994年   1篇
  1993年   1篇
  1992年   2篇
  1991年   5篇
  1990年   2篇
  1989年   1篇
排序方式: 共有127条查询结果,搜索用时 31 毫秒
81.
82.
83.
84.
Common variants, such as those identified by genome-wide association scans, explain only a small proportion of trait variation. Growing evidence suggests that rare functional variants, which are usually missed by genome-wide association scans, play an important role in determining the phenotype. We used pooled multiplexed next-generation sequencing and a customized analysis workflow to detect mutations in five candidate genes for lignin biosynthesis in 768 pooled Populus nigra accessions. We identified a total of 36 non-synonymous single nucleotide polymorphisms, one of which causes a premature stop codon. The most common variant was estimated to be present in 672 of the 1536 tested chromosomes, while the rarest was estimated to occur only once in 1536 chromosomes. Comparison with individual Sanger sequencing in a selected sub-sample confirmed that variants are identified with high sensitivity and specificity, and that the variant frequency was estimated accurately. This proposed method for identification of rare polymorphisms allows accurate detection of variation in many individuals, and is cost-effective compared to individual sequencing.  相似文献   
85.

Background

Small colony variants (SCVs) are slow-growing bacteria, which often show increased resistance to antibiotics and cause latent or recurrent infections. It is therefore important to understand the mechanisms at the basis of this phenotypic switch.

Methodology/Principal Findings

One SCV (termed PAO-SCV) was isolated, showing high resistance to gentamicin and to the cephalosporine cefotaxime. PAO-SCV was prone to reversion as evidenced by emergence of large colonies with a frequency of 10−5 on media without antibiotics while it was stably maintained in presence of gentamicin. PAO-SCV showed a delayed growth, defective motility, and strongly reduced levels of the quorum sensing Pseudomonas quinolone signal (PQS). Whole genome expression analysis further suggested a multi-layered antibiotic resistance mechanism, including simultaneous over-expression of two drug efflux pumps (MexAB-OprM, MexXY-OprM), the LPS modification operon arnBCADTEF, and the PhoP-PhoQ two-component system. Conversely, the genes for the synthesis of PQS were strongly down-regulated in PAO-SCV. Finally, genomic analysis revealed the presence of mutations in phoP and phoQ genes as well as in the mexZ gene encoding a repressor of the mexXY and mexAB-oprM genes. Only one mutation occurred only in REV, at nucleotide 1020 of the tufA gene, a paralog of tufB, both encoding the elongation factor Tu, causing a change of the rarely used aspartic acid codon GAU to the more common GAC, possibly causing an increase of tufA mRNA translation. High expression of phoP and phoQ was confirmed for the SCV variant while the revertant showed expression levels reduced to wild-type levels.

Conclusions

By combining data coming from phenotypic, gene expression and proteome analysis, we could demonstrate that resistance to aminoglycosides in one SCV mutant is multifactorial including overexpression of efflux mechanisms, LPS modification and is accompanied by a drastic down-regulation of the Pseudomonas quinolone signal quorum sensing system.  相似文献   
86.
The manipulation of lignin could, in principle, facilitate efficient biofuel production from plant biomass. Despite intensive study of the lignin pathway, uncertainty exists about the enzyme catalyzing the last step in syringyl (S) monolignol biosynthesis, the reduction of sinapaldehyde to sinapyl alcohol. Traditional schemes of the pathway suggested that both guaiacyl (G) and S monolignols are produced by a single substrate-versatile enzyme, cinnamyl alcohol dehydrogenase (CAD). This was challenged by the discovery of a novel sinapyl alcohol dehydrogenase (SAD) that preferentially uses sinapaldehyde as a substrate and that was claimed to regulate S lignin biosynthesis in angiosperms. Consequently, most pathway schemes now show SAD (or SAD and CAD) at the sinapaldehyde reduction step, although functional evidence is lacking. We cloned SAD from tobacco (Nicotiana tabacum) and suppressed it in transgenic plants using RNA interference-inducing vectors. Characterization of lignin in the woody stems shows no change to content, composition, or structure, and S lignin is normal. By contrast, plants additionally suppressed in CAD have changes to lignin structure and S:G ratio and have increased sinapaldehyde in lignin, similar to plants suppressed in CAD alone. These data demonstrate that CAD, not SAD, is the enzyme responsible for S lignin biosynthesis in woody angiosperm xylem.  相似文献   
87.
Although cell wall polymers play important roles in the tolerance of plants to abiotic stress, the effects of salinity on cell wall composition and metabolism in grasses remain largely unexplored. Here, we conducted an in-depth study of changes in cell wall composition and phenolic metabolism induced upon salinity in maize seedlings and plants. Cell wall characterization revealed that salt stress modulated the deposition of cellulose, matrix polysaccharides and lignin in seedling roots, plant roots and stems. The extraction and analysis of arabinoxylans by size-exclusion chromatography, 2D-NMR spectroscopy and carbohydrate gel electrophoresis showed a reduction of arabinoxylan content in salt-stressed roots. Saponification and mild acid hydrolysis revealed that salinity also reduced the feruloylation of arabinoxylans in roots of seedlings and plants. Determination of lignin content and composition by nitrobenzene oxidation and 2D-NMR confirmed the increased incorporation of syringyl units in lignin of maize roots. Salt stress also induced the expression of genes and the activity of enzymes enrolled in phenylpropanoid biosynthesis. The UHPLC–MS-based metabolite profiling confirmed the modulation of phenolic profiling by salinity and the accumulation of ferulate and its derivatives 3- and 4-O-feruloyl quinate. In conclusion, we present a model for explaining cell wall remodeling in response to salinity.  相似文献   
88.
This paper describes an analysis of the first cell cycle of mouse oocytes aged postovulation and fertilized in vivo. For this purpose, we developed a procedure for inducing ovulation in vivo that allows accurate timing of ovulation. The method is based on a luteinizing hormone (LH)-releasing hormone (LHRH) administration at proestrus. This ovulation procedure had no detectable effect on the rate of ovulation or postimplantation embryonic death. We used this method of ovulation induction in an analysis of the separate stages of the first cell cycle of in vivo fertilized postovulation aged oocytes. All stages assessed were shorter in aged oocytes (12 hr postovulation) than in zygotes from unaged oocytes (1 hr postovulation): 1) the time interval between insemination and penetration of the aged oocytes was 1.5 hr shorter than the time interval of the unaged oocytes; 2) pronuclear formation in the fertilized aged oocytes was somewhat quicker than pronuclear formation in fertilized unaged oocytes; 3) in zygotes from aged oocytes, the time between formation of pronuclei and the pronuclear membrane breakdown was 1 hr shorter than in zygotes from unaged oocytes; 4) the first cleavage division was 3 hr advanced in zygotes from aged oocytes compared with the moment of the first cleavage division in zygotes from unaged oocytes. We also determined the glutathione (GSH) content of unaged and aged oocytes to investigate a possible relationship between the rate of pronuclear formation and GSH. The level of GSH was two times lower in oocytes aged postovulation for 12 hr than in unaged oocytes.2+ level of GSH in fertilized, unaged oocytes was half that in  相似文献   
89.
Accelerating the domestication of forest trees in a changing world   总被引:2,自引:0,他引:2  
In light of impending water and arable land shortages, population growth and climate change, it is more important than ever to examine how forest tree domestication can be accelerated to sustainably meet future demands for wood, biomass, paper, fuel and biomaterials. Because of long breeding cycles, tree domestication cannot be rapidly achieved through traditional genetic improvement methods alone. Integrating modern genetic and genomic techniques with conventional breeding will expedite tree domestication. Breeders will only embrace these technologies if they are cost-effective and readily accessible, and forest landowners will only adopt end-products that meet with regulatory approval and public acceptance. All parties involved must work together to achieve these objectives for the benefit of society.  相似文献   
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号