首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   110篇
  免费   17篇
  2021年   2篇
  2020年   2篇
  2019年   1篇
  2017年   2篇
  2016年   2篇
  2015年   5篇
  2014年   7篇
  2013年   4篇
  2012年   9篇
  2011年   8篇
  2010年   9篇
  2009年   3篇
  2008年   3篇
  2007年   5篇
  2006年   1篇
  2005年   4篇
  2004年   7篇
  2003年   4篇
  2002年   3篇
  2001年   6篇
  2000年   10篇
  1999年   4篇
  1998年   3篇
  1997年   1篇
  1996年   7篇
  1995年   3篇
  1994年   1篇
  1993年   1篇
  1992年   2篇
  1991年   5篇
  1990年   2篇
  1989年   1篇
排序方式: 共有127条查询结果,搜索用时 15 毫秒
31.
Interspecific hybrids of Populus species are known for their superior growth. In this study, we examined the effect of the genetic background and contrasting environmental conditions on growth and searched for quantitative trait loci (QTL) affecting growth traits. To this end, two hybrid poplar families resulting from controlled crosses, Populus deltoides ‘S9-2’ × P. nigra ‘Ghoy’ (D × N, 180 F1) and P. deltoides ‘S9-2’ × P. trichocarpa ‘V24’ (D × T, 182 F1), were grown at two contrasting sites, Northern Italy and Central France. At the end of the second growing season, tree dimensions (stem height, circumference, and volume) were assessed. The performances of both families significantly differed within and between sites. Tree volume was significantly larger at the Italian site as compared to the French site. Genotype by environment interactions were significant but low for both families and for all growth traits. Tight correlations among the individual growth traits indicated that there may be a common genetic mechanism with pleiotropic effects on these growth traits. In line with previous studies, linkage groups I, VII, IX, X, XVI, XVII, and XIX appeared to have genomic regions with the largest effects on growth traits. This study revealed that (1) both families have high potential for selection of superior poplar hybrids due to the pronounced heterosis (hybrid vigor) and the large genetic variability in terms of growth and (2) the choice of site is crucial for poplar cultivation. Dillen and Storme contributed equally to the work. An erratum to this article can be found at  相似文献   
32.
33.
34.
The Arabidopsis ABSCISIC ACID-INSENSITIVE3 (ABI3) protein plays a crucial role during late seed development and has an additional function at the vegetative meristem, particularly during periods of growth-arresting conditions and quiescence. Here, we show that the ABI3 homolog of poplar (PtABI3) is expressed in buds during natural bud set. Expression occurs clearly after perception of the critical daylength that initiates bud set and dormancy in poplar. In short-day conditions mimicking natural bud set, the expression of a chimeric PtABI3::beta-glucuronidase (GUS) gene occurred in those organs and cells of the apex that grow actively but will undergo arrest: the young embryonic leaves, the subapical meristem, and the procambial strands. If PtABI3 is overexpressed or downregulated, bud development in short-day conditions is altered. Constitutive overexpression of PtABI3 resulted in apical buds with large embryonic leaves and small stipules, whereas in antisense lines, bud scales were large and leaves were small. Thus, PtABI3 influences the size and ratio of embryonic leaves and bud scales/stipules that differentiate from the primordia under short-day conditions. These observations, together with the expression of PtABI3::GUS in embryonic leaves but not in bud scales/stipules, support the idea that wild-type PtABI3 is required for the relative growth rate and differentiation of embryonic leaves inside the bud. These experiments reveal that ABI3 plays a role in the cellular differentiation of vegetative tissues, in addition to its function in seeds.  相似文献   
35.
36.
Data from other laboratories have shown that speed of bovine blastocyst development is higher when Ménézo B2 is used for coculture compared to TCM199. It was our purpose to investigate whether this early blastocyst formation was also indicative of embryo quality by studying the allocation of inner cells in embryos generated by B2-coculture and by TCM199-coculture. For this purpose, a differential staining technique was used. General embryo development was similar for TCM199- and B2-embryos expressed as rate of cleavage at day 3 and morula-blastocyst formation at day 8 (P > 0.05), but significantly different when expressed as number of eight-cell stages at day 3 and expanded or hatched blastocysts at day 8 (P < 0.01). B2-embryos cultured until day 5, 6, and 7 post insemination, had total cell numbers of 24, 65, and 109 respectively, which was significantly higher than the cell number of TCM199 embryos cultured over the same time period (18, 41, and 71 respectively, P < 0.001). Morphological differentiation was significantly more advanced for B2-embryos at day 7 and 8 (P < 0.0001 and P < 0.001, respectively). First presumptive inner cells appeared in eight- to 16-cell stages at day 3. Because the determination of inner cells by differential staining is depending upon the presence of functional tight junctions, we concluded that the establishment of the tight junction seal in B2-embryos differed from that in TCM199-embryos: Inner cells appeared 0.56 cell cycle later in B2-embryos (P < 0.001) and a larger variation existed in the number of ICM-cells in B2-blastocysts (P < 0.001). The higher total cell number of B2-expanded blastocysts was mainly acquired by trophectoderm growth (P < 0.06). These data indicate that the apparent better quality of B2-embryos (faster cleavage, earlier blastocyst formation) is not reflected in a reliable number of inner cells of B2-blastocysts. © 1996 Wiley-Liss, Inc.  相似文献   
37.
Populus nigra L. is a pioneer tree species of riparian ecosystems that is threatened with extinction because of the loss of its natural habitat. To evaluate the existing genetic diversity of P. nigra within ex-situ collections, we analyzed 675 P. nigra L. accessions from nine European gene banks with three amplified fragment length polymorphism (AFLP) and five microsatellite [or simple sequence repeat (SSR)] primer combinations, and 11 isozyme systems. With isozyme analysis, hybrids could be detected, and only 3% were found in the gene bank collection. AFLP and SSR analyses revealed effectively that 26% of the accessions were duplicated and that the level of clonal duplication varied from 0% in the French gene bank collection up to 78% in the Belgian gene bank collection. SSR analysis was preferred because AFLP was technically more demanding and more prone to scoring errors. To assess the genetic diversity, we grouped material from the gene banks according to topography of the location from which the accessions were originally collected (river system or regions separated by mountains). Genetic diversity was expressed in terms of the following parameters: percentage of polymorphic loci, observed and effective number of alleles, and Neis expected heterozygosity or gene diversity (for AFLP). Genetic diversity varied from region to region and depended, to some extent, on the marker system used. The most unique alleles were identified in the Danube region (Austria), the Rhône region (France), Italy, the Rijn region (The Netherlands), and the Ebro region (Spain). In general, the diversity was largest in the material collected from the regions in Southern Europe. Dendrograms and principal component analysis resulted in a clustering according to topography. Material from the same river systems, but from different countries, clustered together. The genetic differentiation among the regions (Fst/Gst) was moderate.Communicated by H.F. LinskensAFLP is a registered trademark of Keygene  相似文献   
38.
Caffeoyl coenzyme A-3-O-methyltransferase (CCoAOMT) plays an important role in lignin biosynthesis and is encoded by two genes in poplar (Populus trichocarpa). Here, we describe the expression pattern conferred by the two CCoAOMT promoters when fused to the gus-coding sequence in transgenic poplar (Populus tremula x Populus alba). Both genes were expressed similarly in xylem and differentially in phloem. In xylem, expression was preferentially observed in vessels and contact rays, whereas expression was barely detectable in storage rays and fibers, suggesting different routes to monolignol biosynthesis in the different xylem types. Furthermore, after wounding, fungal infection, and bending, the expression of both genes was induced concomitantly with de novo lignin deposition. Importantly, upon bending and leaning of the stem, the cell-specific expression pattern was lost, and both genes were expressed in all cell types of the xylem. CCoAOMT promoter activity correlated well with the presence of the CCoAOMT protein, as shown by immunolocalization. These expression data may explain, at least in part, the heterogeneity in lignin composition that is observed between cell types and upon different environmental conditions.  相似文献   
39.
Assisted reproduction technologies have been introduced 1) to overcome reproductive failures in the human, 2) to increase the number of offspring from selected females and 3) to reduce generation intervals in livestock in farm animals. The successful introduction of these technologies in clinical practice and in livestock breeding programs is the result of enormous scientific efforts. In general, the offspring generated by IVF (human) and IVP (cattle) is normal, but as numbers increase the restraints and drawbacks of new reproductive technologies become visible with respect to the overall efficiency as well as to the occurrence of abnormalities and/or anomalies in the offspring. The objective of the present symposium on "Embryonic Origins of Health" is to present "the-state-of-the-art" and to discuss the restraints and possible long term effects of the application of assisted reproduction technology in both human and livestock. This introduction to the symposium focuses on the relation between early embryonic development and post-natal health. We hypothesize that IVF in the human and IVP in cattle influence the timing of cell-cell interactions during the early stages of embryogenesis which finally result in a incorrect timing of gene expression during the phylotypic stage and subsequent organogenesis. These deviations in embryonic timing might have consequence for the postnatal homeostasis and health.  相似文献   
40.
The Arabidopsis ABSCISIC ACID-INSENSITIVE3 (ABI3) protein has been identified previously as a crucial regulator of late seed development. Here, we show that dark-grown abi3 plants, or abi3 plants returned to the dark after germination in the light, developed and maintained an etioplast with a prominent prolamellar body at developmental stages in which the wild type did not. Overexpression of ABI3 led to the preservation of the plastid ultrastructure that was present at the onset of darkness. These observations suggest that ABI3 plays a role in plastid differentiation pathways in vegetative tissues. Furthermore, the analysis of deetiolated (det1) abi3 double mutants revealed that DET1 and ABI3 impinge on a multitude of common processes. During seed maturation, ABI3 required DET1 to achieve its full expression. Mature det1 abi3 seeds were found to be in a highly germinative state, indicating that germination is controlled by both DET1 and ABI3. During plastid differentiation in leaves of dark-grown plants, DET1 is required for the action of ABI3 as it is during seed development. Together, the results suggest that ABI3 is at least partly regulated by light.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号