首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   322篇
  免费   19篇
  341篇
  2021年   5篇
  2020年   2篇
  2019年   4篇
  2018年   4篇
  2017年   4篇
  2016年   9篇
  2015年   12篇
  2014年   14篇
  2013年   14篇
  2012年   28篇
  2011年   15篇
  2010年   18篇
  2009年   9篇
  2008年   22篇
  2007年   19篇
  2006年   19篇
  2005年   20篇
  2004年   18篇
  2003年   14篇
  2002年   25篇
  2001年   7篇
  2000年   3篇
  1999年   6篇
  1998年   3篇
  1997年   2篇
  1996年   2篇
  1995年   2篇
  1994年   4篇
  1993年   1篇
  1992年   3篇
  1991年   2篇
  1990年   4篇
  1989年   3篇
  1987年   1篇
  1986年   2篇
  1985年   3篇
  1983年   2篇
  1982年   2篇
  1979年   2篇
  1978年   2篇
  1976年   3篇
  1975年   1篇
  1973年   1篇
  1971年   1篇
  1969年   1篇
  1966年   1篇
  1963年   1篇
  1958年   1篇
排序方式: 共有341条查询结果,搜索用时 9 毫秒
91.
In the present study, we investigated possible sites of regulation of long-chain fatty acid (LCFA) oxidation in contracting human skeletal muscle. Leg plasma LCFA kinetics were determined in eight healthy men during bicycling (60 min, 65% peak oxygen uptake) with either high (H-FOX) or low (L-FOX) leg fat oxidation (H-FOX: 1,098 +/- 140; L-FOX: 494 +/- 84 micromol FA/min, P < 0.001), which was achieved by manipulating preexercise muscle glycogen (H-FOX: 197 +/- 21; L-FOX: 504 +/- 25 mmol/kg dry wt, P < 0.001). Several blood metabolites and hormones were kept nearly similar between trials by allocating a preexercise meal and infusing glucose intravenously during exercise. During exercise, leg plasma LCFA fractional extraction was identical between trials (H-FOX: 17.8 +/- 1.6; L-FOX: 18.2 +/- 1.8%, not significant), suggesting similar LCFA transport capacity in muscle. On the contrary, leg plasma LCFA oxidation was 99% higher in H-FOX than in L-FOX (421 +/- 47 vs. 212 +/- 37 micromol/min, P < 0.001). Probably due to the slightly higher (P < 0.01) plasma LCFA concentration in H-FOX than in L-FOX, leg plasma LCFA uptake was nonsignificantly (P = 0.17) higher (25%) in H-FOX than in L-FOX, yet the fraction of plasma LCFA uptake oxidized was 61% higher (P < 0.05) in H-FOX than in L-FOX. Accordingly, the muscle content of several lipid-binding proteins did not differ significantly between trials, although fatty acid translocase/CD36 and caveolin-1 were elevated (P < 0.05) by the high-intensity exercise and dietary manipulation allocated on the day before the experimental trial. The present data suggest that, in contracting human skeletal muscle with different fat oxidation rates achieved by manipulating preexercise glycogen content, transsarcolemmal transport is not limiting plasma LCFA oxidation. Rather, the latter seems to be limited by intracellular regulatory mechanisms.  相似文献   
92.
The cellular targets of primary mutations and malignant transformation remain elusive in most cancers. Here, we show that clinically and genetically different subtypes of acute lymphoblastic leukemia (ALL) originate and transform at distinct stages of hematopoietic development. Primary ETV6-RUNX1 (also known as TEL-AML1) fusions and subsequent leukemic transformations were targeted to committed B-cell progenitors. Major breakpoint BCR-ABL1 fusions (encoding P210 BCR-ABL1) originated in hematopoietic stem cells (HSCs), whereas minor BCR-ABL1 fusions (encoding P190 BCR-ABL1) had a B-cell progenitor origin, suggesting that P190 and P210 BCR-ABL1 ALLs represent largely distinct tumor biological and clinical entities. The transformed leukemia-initiating stem cells in both P190 and P210 BCR-ABL1 ALLs had, as in ETV6-RUNX1 ALLs, a committed B progenitor phenotype. In all patients, normal and leukemic repopulating stem cells could successfully be separated prospectively, and notably, the size of the normal HSC compartment in ETV6-RUNX1 and P190 BCR-ABL1 ALLs was found to be unaffected by the expansive leukemic stem cell population.  相似文献   
93.
This study was carried out in order to investigate human enteric virus contaminants in mussels from three sites on the west coast of Sweden, representing a gradient of anthropogenic influence. Mussels were sampled monthly during the period from February 2000 to July 2001 and analyzed for adeno-, entero-, Norwalk-like, and hepatitis A viruses as well as the potential viral indicator organisms somatic coliphages, F-specific RNA bacteriophages, bacteriophages infecting Bacteroides fragilis, and Escherichia coli. The influence of environmental factors such as water temperature, salinity, and land runoff on the occurrence of these microbes was also included in this study. Enteric viruses were found in 50 to 60% of the mussel samples, and there were no pronounced differences between the samples from the three sites. E. coli counts exceeded the limit for category A for shellfish sanitary safety in 40% of the samples from the sites situated in fjords. However, at the site in the outer archipelago, this limit was exceeded only once, in March 2001, when extremely high levels of atypical indole-negative strains of E. coli were registered at all three sites. The environmental factors influenced the occurrence of viruses and phages differently, and therefore, it was hard to find a coexistence between them. This study shows that, for risk assessment, separate modeling should be done for every specific area, with special emphasis on environmental factors such as temperature and land runoff. The present standard for human fecal contamination, E. coli, seems to be an acceptable indicator of only local sanitary contamination; it is not a reliable indicator of viral contaminants in mussels. To protect consumers and get verification of “clean” mussels, it seems necessary to analyze for viruses as well. The use of a molecular index of the human contamination of Swedish shellfish underscores the need for reference laboratories with high-technology facilities.  相似文献   
94.
Ehlers BK  Thompson J 《Oecologia》2004,141(3):511-518
Local modification of the soil environment by individual plants may affect the performance and composition of associated plant species. The aromatic plant Thymus vulgaris has the potential to modify the soil through leaching of water-soluble compounds from leaves and litter decomposition. In southern France, six different thyme chemotypes can be distinguished based on the dominant monoterpene in the essential oil, which is either phenolic or non-phenolic in structure. We examine how soils from within and away from thyme patches in sites dominated by either phenolic or non-phenolic chemotypes affect germination, growth and reproduction of the associated grass species Bromus erectus. To do so, we collected seeds of B. erectus from three phenolic and three non-phenolic sites. Seeds and seedlings were grown on soils from these sites in a reciprocal transplant type experiment in the glasshouse. Brome of non-phenolic origin performed significantly better on its home soil than on soil from a different non-phenolic or a phenolic site. This response to local chemotypes was only observed on soil collected directly underneath thyme plants and not on soil in the same site (<5 m away) but where no thyme plants were present. This is preliminary evidence that brome plants show an adaptive response to soil modifications mediated by the local thyme chemotypes. Reproductive effort was consistently higher in brome of phenolic origin than in brome of non-phenolic origin (on both thyme- and grass-soil), indicating that life-history variation may be related to environmental factors which also contribute to the spatial differentiation of thyme chemotypes. Moreover, we found that brome growing on thyme-soil in general was heavier than when growing on grass-soil, regardless of the origin of the brome plants. This is concordant with thyme-soil containing higher amounts of organic matter and nitrogen than grass-soil. Our results indicate that patterns of genetic differentiation and local adaptation may modify competitive interactions and possible facilitation effects in natural communities.  相似文献   
95.
The accumulation and transport of solutes are hallmarks of osmoadaptation. In this study we have employed the inability of the Saccharomyces cerevisiae gpd1Delta gpd2Delta mutant both to produce glycerol and to adapt to high osmolarity to study solute transport through aquaglyceroporins and the control of osmostress-induced signaling. High levels of different polyols, including glycerol, inhibited growth of the gpd1Delta gpd2Delta mutant. This growth inhibition was suppressed by expression of the hyperactive allele Fps1-Delta1 of the osmogated yeast aquaglyceroporin, Fps1. The degree of suppression correlated with the relative rate of transport of the different polyols tested. Transport studies in secretory vesicles confirmed that Fps1-Delta1 transports polyols at increased rates compared with wild type Fps1. Importantly, wild type Fps1 and Fps1-Delta1 showed similarly low permeability for water. The growth defect on polyols in the gpd1Delta gpd2Delta mutant was also suppressed by expression of a heterologous aquaglyceroporin, rat AQP9. We surmised that this suppression was due to polyol influx, causing the cells to passively adapt to the stress. Indeed, when aquaglyceroporin-expressing gpd1Delta gpd2Delta mutants were treated with glycerol, xylitol, or sorbitol, the osmosensing HOG pathway was activated, and the period of activation correlated with the apparent rate of polyol uptake. This observation supports the notion that deactivation of the HOG pathway is closely coupled to osmotic adaptation. Taken together, our "conditional" osmotic stress system facilitates studies on aquaglyceroporin function and reveals features of the osmosensing and signaling system.  相似文献   
96.
Cytochromes P450 of the CYP79 family catalyze the conversion of amino acids to oximes in the biosynthesis of glucosinolates, a group of natural plant products known to be involved in plant defense and as a source of flavor compounds, cancer-preventing agents and bioherbicides. We report a detailed biochemical analysis of the substrate specificity and kinetics of CYP79F1 and CYP79F2, two cytochromes P450 involved in the biosynthesis of aliphatic glucosinolates in Arabidopsis thaliana. Using recombinant CYP79F1 and CYP79F2 expressed in Escherichia coli and Saccharomyces cerevisiae, respectively, we show that CYP79F1 metabolizes mono- to hexahomomethionine, resulting in both short- and long-chain aliphatic glucosinolates. In contrast, CYP79F2 exclusively metabolizes long-chain elongated penta- and hexahomomethionines. CYP79F1 and CYP79F2 are spatially and developmentally regulated, with different gene expression patterns. CYP79F2 is highly expressed in hypocotyl and roots, whereas CYP79F1 is strongly expressed in cotyledons, rosette leaves, stems, and siliques. A transposon-tagged CYP79F1 knockout mutant completely lacks short-chain aliphatic glucosinolates, but has an increased level of long-chain aliphatic glucosinolates, especially in leaves and seeds. The level of long-chain aliphatic glucosinolates in a transposon-tagged CYP79F2 knockout mutant is substantially reduced, whereas the level of short-chain aliphatic glucosinolates is not affected. Biochemical characterization of CYP79F1 and CYP79F2, and gene expression analysis, combined with glucosinolate profiling of knockout mutants demonstrate the functional role of these enzymes. This provides valuable insights into the metabolic network leading to the biosynthesis of aliphatic glucosinolates, and into metabolic engineering of altered aliphatic glucosinolate profiles to improve nutritional value and pest resistance.  相似文献   
97.
A bioartificial liver (BAL) will bridge patients with acute liver failure (ALF) to either spontaneous regeneration or liver transplantation. The nitrogen metabolism is important in ALF, and the metabolism of nonparenchymal liver cells (NPCs) is poorly understood. The scope of this study was to investigate whether cocultivation of hepatocytes with NPCs would augment the functions of a BAL (HN-BAL) compared with a BAL equipped with only hepatocytes (H-BAL). In addition, NPCs were similarly cultivated alone. The cells were cultivated for 8 days in simulated microgravity with serum-free growth medium. With NPCs, initial ammonia and lactate production were fivefold and over twofold higher compared with later time periods despite sufficient oxygen supply. Initial lactate production and glutamine consumption were threefold higher in HN-BAL than in H-BAL. With NPCs, initial glutamine consumption was two- to threefold higher compared with later time periods, whereas initial ornithine production and arginine consumption were over four- and eightfold higher compared with later time periods. In NPCs, the conversion of glutamine to glutamate and ammonia can be explained by the presence of glutaminase, as revealed by PCR analysis. Drug metabolism and clearance of aggregated gamma globulin, probes administered to test functions of hepatocytes and NPCs, respectively, were higher in HN-BAL than in H-BAL. In conclusion, NPCs produce ammonia by hydrolysis of amino acids and may contribute to the pathogenesis of ALF. High amounts of lactate are produced by NPCs under nonhypoxic conditions. Cocultivation augments differentiated functions such as drug metabolism and clearance of aggregated gamma-globulin.  相似文献   
98.
The fourth component of complement (C4) has two classes of protein, C4A and C4B, both of which have many allelic forms. The serological determinants Rodgers (Rg1, Rg2) and Chido (Ch1, Ch2, Ch3) are generally associated with C4A and C4B, respectively. The C4B3 allotype has been detected in a single Canadian family that expresses a novel Ch phenotype, Ch:–1, 2, –3. There was no information for the Rg determinants, as the C4A * 2B * 3 haplotype would normally express Rg on the C4A protein. Other C4B3 allotypes in informative families have different Ch phenotypes, and the relationships of these within extended major histocompatibility complex haplotypes are discussed in this paper.  相似文献   
99.
Tetradecylthioacetic acid (TTA) is a hypolipidemic antioxidant with immunomodulating properties involving activation of peroxisome proliferator-activated receptors (PPARs) and proliferation of mitochondria. This study aimed to penetrate the effect of TTA on the development of atherosclerotic lesions in apolipoprotein (apo)-E-/- mice fed a high-fat diet containing 0.3% TTA for 12 weeks. These mice displayed a significantly less atherosclerotic development vs control. Plasma cholesterol was increased by TTA administration and triacylglycerol (TAG) levels in plasma and liver were decreased by TTA supplementation, the latter, probably due to increased mitochondrial fatty acid oxidation and reduced lipogenesis. TTA administration also changed the fatty acid composition in the heart, and the amount of arachidonic acid (ARA) and eicosapentaenoic acid (EPA) was reduced and increased, respectively. The heart mRNA expression of inducible nitric oxidase (NOS)-2 was decreased in TTA-treated mice, whereas the mRNA level of catalase was increased. Finally, reduced plasma levels of inflammatory mediators as IL-1α, IL-6, IL-17, TNF-α and IFN-γ were detected in TTA-treated mice. These data show that TTA reduces atherosclerosis in apoE-/- mice and modulates risk factors related to atherosclerotic disorders. TTA probably acts at both systemic and vascular levels in a manner independent of changes in plasma cholesterol, and triggers TAG catabolism through improved mitochondrial function.  相似文献   
100.
Fish consumption is considered health beneficial as it decreases cardiovascular disease (CVD)-risk through effects on plasma lipids and inflammation. We investigated a salmon protein hydrolysate (SPH) that is hypothesized to influence lipid metabolism and to have anti-atherosclerotic and anti-inflammatory properties. 24 female apolipoprotein (apo) E−/− mice were divided into two groups and fed a high-fat diet with or without 5% (w/w) SPH for 12 weeks. The atherosclerotic plaque area in aortic sinus and arch, plasma lipid profile, fatty acid composition, hepatic enzyme activities and gene expression were determined. A significantly reduced atherosclerotic plaque area in the aortic arch and aortic sinus was found in the 12 apoE−/− mice fed 5% SPH for 12 weeks compared to the 12 casein-fed control mice. Immunohistochemical characterization of atherosclerotic lesions in aortic sinus displayed no differences in plaque composition between mice fed SPH compared to controls. However, reduced mRNA level of Icam1 in the aortic arch was found. The plasma content of arachidonic acid (C20∶4n-6) and oleic acid (C18∶1n-9) were increased and decreased, respectively. SPH-feeding decreased the plasma concentration of IL-1β, IL-6, TNF-α and GM-CSF, whereas plasma cholesterol and triacylglycerols (TAG) were unchanged, accompanied by unchanged mitochondrial fatty acid oxidation and acyl-CoA:cholesterol acyltransferase (ACAT)-activity. These data show that a 5% (w/w) SPH diet reduces atherosclerosis in apoE−/− mice and attenuate risk factors related to atherosclerotic disorders by acting both at vascular and systemic levels, and not directly related to changes in plasma lipids or fatty acids.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号