首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3541篇
  免费   205篇
  国内免费   1篇
  3747篇
  2023年   29篇
  2022年   59篇
  2021年   78篇
  2020年   53篇
  2019年   52篇
  2018年   76篇
  2017年   73篇
  2016年   94篇
  2015年   131篇
  2014年   142篇
  2013年   209篇
  2012年   218篇
  2011年   220篇
  2010年   172篇
  2009年   110篇
  2008年   157篇
  2007年   189篇
  2006年   147篇
  2005年   135篇
  2004年   114篇
  2003年   90篇
  2002年   78篇
  2001年   68篇
  2000年   64篇
  1999年   58篇
  1998年   26篇
  1997年   20篇
  1995年   28篇
  1994年   26篇
  1993年   28篇
  1992年   43篇
  1991年   37篇
  1990年   29篇
  1989年   41篇
  1988年   38篇
  1987年   43篇
  1986年   51篇
  1985年   33篇
  1984年   47篇
  1983年   32篇
  1982年   29篇
  1981年   30篇
  1980年   32篇
  1979年   40篇
  1977年   45篇
  1976年   21篇
  1975年   27篇
  1974年   30篇
  1973年   20篇
  1972年   22篇
排序方式: 共有3747条查询结果,搜索用时 0 毫秒
71.
Yeast strains are commonly associated with sugar rich environments. Various fruit samples were selected as source for isolating yeast cells. The isolated cultures were identified at Genus level by colony morphology, biochemical characteristics and cell morphological characters. An attempt has been made to check the viability of yeast cells under different concentrations of ethanol. Ethanol tolerance of each strain was studied by allowing the yeast to grow in liquid YEPD (Yeast Extract Peptone Dextrose) medium having different concentrations of ethanol. A total of fifteen yeast strains isolated from different samples were used for the study. Seven strains of Saccharomyces cerevisiae obtained from different fruit sources were screened for ethanol tolerance. The results obtained in this study show a range of tolerance levels between 7%-12% in all the stains. Further, the cluster analysis based on 22 RAPD (Random Amplified polymorphic DNA) bands revealed polymorphisms in these seven Saccharomyces strains.  相似文献   
72.
Soil often becomes contaminated with a variety of chemicals due to leakage of under/aboveground chemical storage tanks, improper discharge of waste, or improper design of waste containment facilities. Contaminated soil water can influence the soil's behavior seriously. Mineralogical alterations play a vital role in such circumstances. This paper describes the impact of varying concentrations of sulfuric acid solutions on the swell behavior of expansive soil containing predominantly montmorillonite. Using the conventional oedometer tests, the swell behavior of soil compacted with water inundated with acid solutions was studied. The soil swell, which is about 2% in water, increases to about 9% with 1N and to 50% with 4N acid solutions. The induced swell in acid solutions is attributable to mineralogical changes. The formation of new minerals and their associated fabric changes are investigated by scanning electron microscopy, X-ray diffraction, and energy dispersive analysis of X-ray on soil samples treated with sulfuric acid. While minerals like gypsum and kornelite are formed in the presence of 1N sulfuric acid, aluminite and chloritoid are formed in the presence of 4N sulfuric acid. These types of alterations are known to occur in iron sulfate minerals and are also found on Mars. The mechanism of mineralogical alterations is presented.  相似文献   
73.
We have clonedand functionally characterized the human Na+-dependenthigh-affinity dicarboxylate transporter (hNaDC3) from placenta. ThehNaDC3 cDNA codes for a protein of 602 amino acids with 12 transmembrane domains. When expressed in mammalian cells, the clonedtransporter mediates the transport of succinate in the presence ofNa+ [concentration of substrate necessary for half-maximaltransport (Kt) for succinate = 20 ± 1 µM]. Dimethylsuccinate also interacts with hNaDC3. TheNa+-to-succinate stoichiometry is 3:1 and concentration ofNa+ necessary for half-maximal transport(KNa+0.5) is 49 ± 1 mM as determined by uptake studies withradiolabeled succinate. When expressed in Xenopuslaevis oocytes, hNaDC3 induces Na+-dependent inwardcurrents in the presence of succinate and dimethylsuccinate. At amembrane potential of 50 mV,KSuc0.5 is 102 ± 20 µM andKNa+0.5 is 22 ± 4 mM as determined by the electrophysiological approach. Simultaneous measurements of succinate-evoked charge transfer andradiolabeled succinate uptake in hNaDC3-expressing oocytes indicate acharge-to-succinate ratio of 1:1 for the transport process, suggestinga Na+-to-succinate stoichiometry of 3:1. pH titration ofcitrate-induced currents shows that hNaDC3 accepts preferentially thedivalent anionic form of citrate as a substrate. Li+inhibits succinate-induced currents in the presence of Na+.Functional analysis of rat-human and human-rat NaDC3 chimeric transporters indicates that the catalytic domain of the transporter lies in the carboxy-terminal half of the protein. The humanNaDC3 gene is located on chromosome20q12-13.1, as evidenced by fluorescent in situ hybridization. Thegene is >80 kbp long and consists of 13 exons and 12 introns.

  相似文献   
74.
The membrane proximal external region (MPER) of the gp41 subunit of the HIV-1 envelope glycoprotein (Env) contains determinants for broadly neutralizing antibodies and has remained an important focus of vaccine design. However, creating an immunogen that elicits broadly neutralizing antibodies to this region has proven difficult in part due to the relative inaccessibility of the MPER in the native conformation of Env. Here, we describe the antigenicity and immunogenicity of a panel of oligomeric gp41 immunogens designed to model a fusion-intermediate conformation of Env in order to enhance MPER exposure in a relevant conformation. The immunogens contain segments of the gp41 N- and C-heptad repeats to mimic a trapped intermediate, followed by the MPER, with variations that include different N-heptad lengths, insertion of extra epitopes, and varying C-termini. These well-characterized immunogens were evaluated in two different immunization protocols involving gp41 and gp140 proteins, gp41 and gp160 DNA primes, and different immunization schedules and adjuvants. We found that the immunogens designed to reduce extension of helical structure into the MPER elicited the highest MPER antibody binding titers, but these antibodies lacked neutralizing activity. The gp41 protein immunogens also elicited higher MPER titers than the gp140 protein immunogen. In prime-boost studies, the best MPER responses were seen in the groups that received DNA priming with gp41 vectors followed by gp41 protein boosts. Finally, although titers to the entire protein immunogen were similar in the two immunization protocols, MPER-specific titers differed, suggesting that the immunization route, schedule, dose, or adjuvant may differentially influence MPER immunogenicity. These findings inform the design of future MPER immunogens and immunization protocols.  相似文献   
75.
76.
Zinc deficiency impairs cellular immunity. Up-regulation of mRNA levels of IFN-γ, IL-12Rβ2, and T-bet are essential for Th1 differentiation. We hypothesized that zinc increases Th1 differentiation via up-regulation of IFN-γ and T-bet expression. To test this hypothesis, we used zinc-deficient and zinc-sufficient HUT-78 cells (a Th0 cell line) under different condition of stimulation in this study. We also used TPEN, a zinc-specific chelator, to decrease the bioavailability of zinc in the cells. We measured intracellular free zinc, cytokines, and the mRNAs of T-bet, IFN-γ, and IL-12Rβ2. In this study, we show that in zinc-sufficient HUT-78 cells, mRNA levels of IFN-γ, IL-12Rβ2, and T-bet in PMA/PHA-stimulated cells were increased in comparison to zinc-deficient cells. Although intracellular free zinc was increased slightly in PMA/PHA-stimulated cells, Con-A-stimulated cells in 5 μM zinc medium showed a greater sustained increase in intracellular free zinc in comparison to cells incubated in 1 μM zinc. The cells pre-incubated with TPEN showed decreased mRNA levels of IFN-γ and T-bet mRNAs in comparison to cells without TPEN incubation. We conclude that stimulation of cells by Con-A via TCR, release intracellular free zinc which functions as a signal molecule for generation of IFN-γ and T-bet, and IL-12Rβ2 mRNAs required for Th1 cell differentiation. These results suggest that zinc increase Th1 cell differentiation by up-regulation of IFN-γ and T-bet, and IL-12Rbβ2 mRNAs.  相似文献   
77.
78.
Leaf segments excised from Centella asiatica, a medicinal and neutraceutical plant, produced abundant somaticembryoswhen cultured onMS mediumwith 9.29 Mkinetin in combination with 2.26 M2,4-D. Granular, white,shiny clusters of callus developed after 1 week of culture, and then formed heart and cotyledonary stage embryoson the same medium after 4 weeks. Somatic embryos matured and germinated in the presence of MS mediumcontaining 2.32 M kinetin with (2.89M) GA3. Plantlets were successfully transferred to pots containing amixture of soil and vermiculite (1:1).  相似文献   
79.
Ethyl acetate was explored as an acyl acceptor for immobilized lipase-catalyzed preparation of biodiesel from the crude oils of Jatropha curcas (jatropha), Pongamia pinnata (karanj) and Helianthus annuus (sunflower). The optimum reaction conditions for interesterification of the oils with ethyl acetate were 10% of Novozym-435 (immobilized Candida antarctica lipase B) based on oil weight, ethyl acetate to oil molar ratio of 11:1 and the reaction period of 12h at 50 degrees C. The maximum yield of ethyl esters was 91.3%, 90% and 92.7% with crude jatropha, karanj and sunflower oils, respectively under the above optimum conditions. Reusability of the lipase over repeated cycles in interesterification and ethanolysis was also investigated under standard reaction conditions. The relative activity of lipase could be well maintained over twelve repeated cycles with ethyl acetate while it reached to zero by 6th cycle when ethanol was used as an acyl acceptor.  相似文献   
80.
Technogenic activities (industrial—plastic, textiles, microelectronics, wood preservatives; mining—mine refuse, tailings, smelting; agrochemicals—chemical fertilizers, farm yard manure, pesticides; aerosols—pyrometallurgical and automobile exhausts; biosolids—sewage sludge, domestic waste; fly ash—coal combustion products) are the primary sources of heavy metal contamination and pollution in the environment in addition to geogenic sources. During the last two decades, bioremediation has emerged as a potential tool to clean up the metal-contaminated/polluted environment. Exclusively derived processes by plants alone (phytoremediation) are time-consuming. Further, high levels of pollutants pose toxicity to the remediating plants. This situation could be ameliorated and accelerated by exploring the partnership of plant-microbe, which would improve the plant growth by facilitating the sequestration of toxic heavy metals. Plants can bioconcentrate (phytoextraction) as well as bioimmobilize or inactivate (phytostabilization) toxic heavy metals through in situ rhizospheric processes. The mobility and bioavailability of heavy metal in the soil, particularly at the rhizosphere where root uptake or exclusion takes place, are critical factors that affect phytoextraction and phytostabilization. Developing new methods for either enhancing (phytoextraction) or reducing the bioavailability of metal contaminants in the rhizosphere (phytostabilization) as well as improving plant establishment, growth, and health could significantly speed up the process of bioremediation techniques. In this review, we have highlighted the role of plant growth promoting rhizo- and/or endophytic bacteria in accelerating phytoremediation derived benefits in extensive tables and elaborate schematic sketches.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号