首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   82篇
  免费   10篇
  2021年   3篇
  2020年   1篇
  2019年   3篇
  2018年   3篇
  2017年   1篇
  2016年   2篇
  2015年   1篇
  2014年   1篇
  2013年   5篇
  2012年   4篇
  2011年   8篇
  2010年   4篇
  2009年   4篇
  2008年   7篇
  2007年   11篇
  2006年   7篇
  2005年   10篇
  2004年   6篇
  2003年   3篇
  2002年   1篇
  2001年   2篇
  1998年   2篇
  1997年   1篇
  1994年   1篇
  1991年   1篇
排序方式: 共有92条查询结果,搜索用时 31 毫秒
71.
72.
73.
It is hard to imagine a world without food‐associated microbes. The production of bread, wine, beer, salami, coffee, chocolate, cheese and many other foods and beverages all rely on specific microbes. In cheese, myriad microbial species collaborate to yield the complex organoleptic properties that are appreciated by millions of people worldwide. In the early days of cheese making, these complex communities emerged spontaneously from the natural flora associated with the raw materials, the equipment, the production environment or craftsmen involved in the production process. However, in some cases, the microbes shifted their natural habitat to the new cheese‐associated environment. The most obvious cause of this is backslopping, where part of a fermented product is used to inoculate the next batch. In addition, some microbes may simply adhere to the tools used in the production process. These microbial communities gradually adapted to the novel man‐made niches, a process referred to as “domestication.” Domestication is associated with specific genomic and phenotypic changes and ultimately leads to lineages that are genetically and phenotypically distinct from their wild ancestors. In this issue of Molecular Ecology, Dumas et al. have investigated a prime example of cheese‐associated microbes, the fungus Penicillium roqueforti. The authors identified several hallmarks of domestication in the genome and phenome of this species, allowing them to hypothesize about the origin of blue‐veined cheese fungi domestication, and the specific evolutionary processes involved in adaptation to the cheese matrix.  相似文献   
74.
75.
Twelve glycosides, seven iridoids and five phenylethanoids, have been isolated from leaf and root methanolic extracts of Wall Germander (Teucrium chamaedrys), a Mediterranean species historically used as a medicinal plant. Among them, three iridoid and one phenylethanoid glycosides have been isolated and characterized for the first time. All of the structures have been elucidated on the basis of their spectral data, especially 1D and 2D NMR experiments.The antioxidative properties of pure metabolites, as well as of crude organic extracts of the plant, have been analyzed on the basis of their DPPH radical scavenging capability. The antioxidant capacity in cell-free systems of the isolated metabolites was carried out by measuring their capabilities to inhibit the synthesis of thiobarbituric acid reactive species in assay media using as oxidable substrates a vegetable fat and the pentose sugar 2-deoxyribose and to prevent oxidative damage of the hydrosoluble bovine serum albumin (BSA) protein. Phenylethanoid glycosides resulted efficacious DPPH radical, while iridoid glycosides prevent massively the 2-deoxyribose and BSA oxidations in assay media.  相似文献   
76.
Twelve cores from the protected reef-flat of Molokai revealed that carbonate sediment accumulation, ranging from 3 mm year−1 to less than 1 mm year−1, ended on average 2,500 years ago. Modern sediment is present as a mobile surface veneer but is not trapped within the reef framework. This finding is consistent with the arrest of deposition at the end of the mid-Holocene highstand, known locally as the “Kapapa Stand of the Sea,” ~2 m above the present datum ca. 3,500 years ago in the main Hawaiian Islands. Subsequent erosion, non-deposition, and/or a lack of rigid binding were probable factors leading to the lack of reef-flat accumulation during the late Holocene sea-level fall. Given anticipated climate changes, increased sedimentation of reef-flat environments is to be expected as a consequence of higher sea level.  相似文献   
77.
From the aerial parts of Petrorhagia velutina, a new dimeric p-coumaroyl glucose and two monomeric cis p-coumaroyl and feruloyl derivatives have been isolated along with three known related compounds. The structural characterization of these compounds has been elucidated by 1D and 2D NMR techniques. CAD mass spectra have allowed to confirm the spectroscopic structural analysis and to disclose the fragmentation pattern of the dimeric p-coumaroyl derivative. Radical scavenging efficacy of all the isolated metabolites was assessed by measuring their ability to scavenge DPPH radical and ABTS radical cation. The dimeric metabolite and the monomeric trans isomers showed an effective reducing power the oxidant probes.  相似文献   
78.
Tamburro AM  Pepe A  Bochicchio B 《Biochemistry》2006,45(31):9518-9530
Polyalanine cross-linking domains encoded by exons 6, 15, 17, 19, 21, 23, 25, 27, 29, 31 of human tropoelastin were synthesized, and their conformations were studied in different solutions and at different temperatures by CD and (1)H NMR. The results demonstrated the presence of poly-proline II helix (PPII) in aqueous solvent and of alpha-helical conformation in TFE. The (1)H NMR results allowed the precise localization of the helices along the peptide sequence. These data were further refined by prediction algorithms in order to take into account the reduced helix stability at the end of the peptides. Furthermore, the influence of flanking residues was checked by synthesizing and by determining the structure of a peptide spanning exon 31 coded domain and the first five residues of the following exon 32 coded domain. These studies, together with those previously published [Tamburro, A. M., Bochicchio, B., and Pepe, A. (2003) Biochemistry 42, 13147-62], are used to propose a coherent recomposition of the elastin pieces (domains) in order to give an acceptable solution to the elastin structure-function problem.  相似文献   
79.
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号