首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   82篇
  免费   10篇
  2021年   3篇
  2020年   1篇
  2019年   3篇
  2018年   3篇
  2017年   1篇
  2016年   2篇
  2015年   1篇
  2014年   1篇
  2013年   5篇
  2012年   4篇
  2011年   8篇
  2010年   4篇
  2009年   4篇
  2008年   7篇
  2007年   11篇
  2006年   7篇
  2005年   10篇
  2004年   6篇
  2003年   3篇
  2002年   1篇
  2001年   2篇
  1998年   2篇
  1997年   1篇
  1994年   1篇
  1991年   1篇
排序方式: 共有92条查询结果,搜索用时 695 毫秒
61.
Phytochemistry Reviews - The original version of this article was missing an equal contribution statement.  相似文献   
62.
Both sucrose and amino acids accumulate in desiccation-tolerant leaf material of the C(4) resurrection plant, Sporobolus stapfianus Gandoger (Poaceae). The present investigation was aimed at examining sucrose phosphate synthase (SPS) activity and various metabolic checkpoints involved in the co-ordination of carbon partitioning between these competing pathways during dehydration. In the initial phase of dehydration, photosynthesis and starch content declined to immeasurable levels, whilst significant increases in hexose sugars, sucrose, and amino acids were associated with concomitant significant increases in SPS and pyruvate kinase (PK) activities, and maximal activity levels of phosphoenolpyruvate carboxylase (PEPCase), NADP-dependent isocitrate dehydrogenase (NADP-ICDH), and NADH-dependent glutamate synthase (NADH-GOGAT). The next phase of dehydration was characterized by changes in metabolism coinciding with net hexose sugar phosphorylation. This phase was characterized by a further significant increase in sucrose accumulation, with increased rates of net sucrose accumulation and maximum rates of SPS activity measured under both saturating and limiting (inhibitory) conditions. SPS protein was also increased. The stronger competitive edge of SPS for carbon entering glycolysis during hexose phosphorylation was also demonstrated by the further decrease in respiration and the simultaneous, significant decline in both PEPCase and PK activities. A decreased anabolic demand for 2-oxoglutarate (2OG), which remained constant, was shown by the co-ordinated decrease in GOGAT. It is proposed that the further increase in amino acids in this phase of dehydration may be in part attributable to the breakdown of insoluble proteins.  相似文献   
63.
The present study analyses changes in nitrogen compounds, amino acid composition, and glutamate metabolism in the resurrection plant Sporobolus stapfianus during dehydration stress. Results showed that older leaves (OL) were desiccation-sensitive whereas younger leaves (YL) were desiccation-tolerant. OL lost their soluble protein more rapidly, and to a larger extent than YL. Enzymes of primary nitrogen assimilation were affected by desiccation and the decrease in the glutamine synthetase (GS, EC 6.3.1.2) and ferredoxin-dependent GOGAT (Fd-GOGAT, EC 1.4.7.1) activities was higher in OL than in YL, thus suggesting higher sensibility to dehydration. Moreover, YL showed higher total GS enzyme activity at the end of the dehydration stress and was shown to maintain high chloroplastic GS protein content during the entire stress period. Free amino acid content increased in both YL and OL between 88% and 6% relative water content. Interestingly, OL and YL did not accumulate the same amino acids. OL accumulated large amounts of proline and gamma-aminobutyrate whereas YL preferentially accumulated asparagine and arginine. It is concluded (i) that modifications in the nitrogen and amino acid metabolism during dehydration stress were different depending on leaf development and (ii) that proline and gamma-aminobutyrate accumulation in S. stapfianus leaves were not essential for the acquisition of desiccation tolerance. On the contrary, the accumulation of large amounts of asparagine and arginine in the YL during dehydration could be important and serve as essential nitrogen and carbon reservoirs useful during rehydration. In this context, the role of GS for asparagine accumulation in YL is discussed.  相似文献   
64.
65.
66.
Bochicchio B  Pepe A 《Chirality》2011,23(9):694-702
In this review, we present a comprehensive overview of the molecular studies on human tropoelastin domains accomplished by Tamburro and co-workers in the last decade. The used approach is the reductionist approach applied to human tropoelastin and is based on the observation that the tropoelastin gene exhibits a cassette-like organization, with a regular alternation of cross-linking and hydrophobic domains putatively responsible for the elasticity of the protein. The peculiar structure of human tropoelastin gene prompted us to study the isolated domains encoded by the exons of tropoelastin, with the perspective to get deep insights into the structural properties of the whole protein. At the molecular level, the results clearly evidence large flexibility of the polypeptide chains in the hydrophobic domains, which oscillate between rather extended and folded conformations. An important role was assigned to poly-proline II conformation considered as the hinge structure in the dynamic conformational equilibrium suggested for the hydrophobic domains. For the lysine-rich cross-linking domains, the structural studies exactly localized α-helix along the polypeptide sequence. Furthermore, at supramolecular level, these studies showed that several domains are able to self-assemble in two different aggregation patterns, the fibrous elastin-like structure for some proline-rich hydrophobic domains and the amyloid-like for some glycine-rich hydrophobic domains. Accordingly, the studies suggest that the reductionist approach was a valid tool for studying a complex protein, such as elastin, elucidating not only the structure but also the specific role played by its constituent domains.  相似文献   
67.
We have adapted a solution hybrid selection protocol to enrich pathogen DNA in clinical samples dominated by human genetic material. Using mock mixtures of human and Plasmodium falciparum malaria parasite DNA as well as clinical samples from infected patients, we demonstrate an average of approximately 40-fold enrichment of parasite DNA after hybrid selection. This approach will enable efficient genome sequencing of pathogens from clinical samples, as well as sequencing of endosymbiotic organisms such as Wolbachia that live inside diverse metazoan phyla.  相似文献   
68.

Background

DNA replication initiates at distinct origins in eukaryotic genomes, but the genomic features that define these sites are not well understood.

Results

We have taken a combined experimental and bioinformatic approach to identify and characterize origins of replication in three distantly related fission yeasts: Schizosaccharomyces pombe, Schizosaccharomyces octosporus and Schizosaccharomyces japonicus. Using single-molecule deep sequencing to construct amplification-free high-resolution replication profiles, we located origins and identified sequence motifs that predict origin function. We then mapped nucleosome occupancy by deep sequencing of mononucleosomal DNA from the corresponding species, finding that origins tend to occupy nucleosome-depleted regions.

Conclusions

The sequences that specify origins are evolutionarily plastic, with low complexity nucleosome-excluding sequences functioning in S. pombe and S. octosporus, and binding sites for trans-acting nucleosome-excluding proteins functioning in S. japonicus. Furthermore, chromosome-scale variation in replication timing is conserved independently of origin location and via a mechanism distinct from known heterochromatic effects on origin function. These results are consistent with a model in which origins are simply the nucleosome-depleted regions of the genome with the highest affinity for the origin recognition complex. This approach provides a general strategy for understanding the mechanisms that define DNA replication origins in eukaryotes.  相似文献   
69.
Twelve C(13) nor-isoprenoids have been isolated from the leaves of Cestrum parqui (Solanaceae). The structure (2R,6R,9R)-2,9-dihydroxy-4-megastigmen-3-one has been assigned to the new compound. All the structures have been determined by spectroscopic means and chemical correlations. The compounds showed phytotoxic effect on the germination and growth of Lactuca sativa L.  相似文献   
70.
Chenoalbicin, a novel cinnamic acid amide alkaloid from Chenopodium album   总被引:1,自引:0,他引:1  
The roots of Chenopodium album were infused in MeOH, and the extract was partitioned between AcOEt and H2O. AcOEt-Soluble material was subjected to different silica-gel column chromatographies and then purified by reverse-phase HPLC to afford a new cinnamic acid amide alkaloid as a racemic mixture. The new compound, named chenoalbicin (1), was characterized by extensive spectroscopic investigation, especially 1D and 2D NMR spectroscopy. Its effects on the germination and growth of Lactuca sativa L. has been studied. The results are reported as percentage differences of germination, root elongation, and shoot elongation from the control at concentrations ranging from 10(-4) to 10(-7) M.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号