首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4946篇
  免费   416篇
  国内免费   3篇
  2024年   3篇
  2023年   32篇
  2022年   76篇
  2021年   136篇
  2020年   69篇
  2019年   101篇
  2018年   92篇
  2017年   94篇
  2016年   173篇
  2015年   284篇
  2014年   307篇
  2013年   384篇
  2012年   465篇
  2011年   463篇
  2010年   274篇
  2009年   260篇
  2008年   361篇
  2007年   329篇
  2006年   318篇
  2005年   278篇
  2004年   240篇
  2003年   218篇
  2002年   182篇
  2001年   21篇
  2000年   15篇
  1999年   29篇
  1998年   33篇
  1997年   22篇
  1996年   29篇
  1995年   10篇
  1994年   6篇
  1993年   9篇
  1992年   4篇
  1991年   8篇
  1990年   10篇
  1989年   4篇
  1988年   7篇
  1987年   1篇
  1985年   2篇
  1982年   6篇
  1981年   2篇
  1980年   4篇
  1979年   1篇
  1978年   1篇
  1976年   1篇
  1974年   1篇
排序方式: 共有5365条查询结果,搜索用时 15 毫秒
171.
172.
173.
There is a growing appreciation for the idea that bacterial utilization of host-derived lipids, including cholesterol, supports Mycobacterium tuberculosis (Mtb) pathogenesis. This has generated interest in identifying novel antibiotics that can disrupt cholesterol utilization by Mtb in vivo. Here we identify a novel small molecule agonist (V-59) of the Mtb adenylyl cyclase Rv1625c, which stimulates 3’, 5’-cyclic adenosine monophosphate (cAMP) synthesis and inhibits cholesterol utilization by Mtb. Similarly, using a complementary genetic approach that induces bacterial cAMP synthesis independent of Rv1625c, we demonstrate that inducing cAMP synthesis is sufficient to inhibit cholesterol utilization in Mtb. Although the physiological roles of individual adenylyl cyclase enzymes in Mtb are largely unknown, here we demonstrate that the transmembrane region of Rv1625c is required during cholesterol metabolism. Finally, the pharmacokinetic properties of Rv1625c agonists have been optimized, producing an orally-available Rv1625c agonist that impairs Mtb pathogenesis in infected mice. Collectively, this work demonstrates a role for Rv1625c and cAMP signaling in controlling cholesterol metabolism in Mtb and establishes that cAMP signaling can be pharmacologically manipulated for the development of new antibiotic strategies.  相似文献   
174.
175.
Attachment to the intestinal epithelium is critical to the lifestyle of the ubiquitous parasite Giardia lamblia. The ventrolateral flange is a sheet-like membrane protrusion at the interface between parasites and attached surfaces. This structure has been implicated in attachment, but its role has been poorly defined. Here, we identified a novel actin associated protein with putative WH2-like actin binding domains we named Flangin. Flangin complexes with Giardia actin (GlActin) and is enriched in the ventrolateral flange making it a valuable marker for studying the flanges’ role in Giardia biology. Live imaging revealed that the flange grows to around 1 μm in width after cytokinesis, then remains uniform in size during interphase, grows in mitosis, and is resorbed during cytokinesis. A flangin truncation mutant stabilizes the flange and blocks cytokinesis, indicating that flange disassembly is necessary for rapid myosin-independent cytokinesis in Giardia. Rho family GTPases are important regulators of membrane protrusions and GlRac, the sole Rho family GTPase in Giardia, was localized to the flange. Knockdown of Flangin, GlActin, and GlRac result in flange formation defects. This indicates a conserved role for GlRac and GlActin in forming membrane protrusions, despite the absence of canonical actin binding proteins that link Rho GTPase signaling to lamellipodia formation. Flangin-depleted parasites had reduced surface contact and when challenged with fluid shear force in flow chambers they had a reduced ability to remain attached, confirming a role for the flange in attachment. This secondary attachment mechanism complements the microtubule based adhesive ventral disc, a feature that may be particularly important during mitosis when the parental ventral disc disassembles in preparation for cytokinesis. This work supports the emerging view that Giardia’s unconventional actin cytoskeleton has an important role in supporting parasite attachment.  相似文献   
176.
177.
Sheth SA  Nemoto M  Guiou M  Walker M  Pouratian N  Toga AW 《Neuron》2004,42(2):347-355
We investigated the relationship between neuronal activity, oxygen metabolism, and hemodynamic responses in rat somatosensory cortex with simultaneous optical intrinsic signal imaging and spectroscopy, laser Doppler flowmetry, and local field potential recordings. Changes in cerebral oxygen consumption increased linearly with synaptic activity but with a threshold effect consistent with the existence of a tissue oxygen buffer. Modeling analysis demonstrated that the coupling between neuronal activity and hemodynamic response magnitude may appear linear over a narrow range but incorporates nonlinear effects that are better described by a threshold or power law relationship. These results indicate that caution is required in the interpretation of perfusion-based indicators of brain activity, such as functional magnetic resonance imaging (fMRI), and may help to refine quantitative models of neurovascular coupling.  相似文献   
178.
179.
We calculated functional food factor (FFF) intakes using a new database and examined their relationship to health conditions commonly affecting Japanese women in midlife. One-day DRs were collected weekly for 6 months from 67 Japanese women, aged 45-55 yr, living in Kyoto prefecture, Japan. Macro- and micronutrient and FFF intake were calculated from the resulting 1528 DRs. Factor analysis and logistic regression were performed to identify relationships between FFFs and past health history. Fourteen of 17 FFF factors, as well as age, BMI and menopausal status, exhibited both positive and negative correlations with past history of hypertension, diabetes, allergy, migraine, and menopausal syndrome.  相似文献   
180.
Bone physiology can be examined on multiple length scales. Results of cell-level studies, typically carried out in vitro, are often extrapolated to attempt to understand tissue and organ physiology. Results of organ- or organism-level studies are often analyzed to deduce the state(s) of the cells within the larger system(s). Although phenomena on all of these scales—cell, tissue, organ, system, organism—are interlinked and contribute to the overall health and function of bone tissue, it is difficult to relate research among these scales. For example, groups of cells in an exogenous, in vitro environment that is well defined by the researcher would not be expected to function similarly to those in a dynamic, endogenous environment, dictated by systemic as well as organismal physiology. This review of the literature on bone cell culture describes potential causes and components of cell "culture shock," i.e., behavioral variations associated with the transition from in vivo to in vitro environment, focusing on investigations of mechanotransduction and experimental approaches to mimic aspects of bone tissue on a macroscopic scale. The state of the art is reviewed, and new paradigms are suggested to begin bridging the gap between two-dimensional cell cultures in petri dishes and the three-dimensional environment of living bone tissue. osteoblast; osteocyte; tissue engineering; mechanobiology; mechanochemical transduction; fluid flow  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号