首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   761篇
  免费   60篇
  国内免费   1篇
  822篇
  2022年   5篇
  2021年   8篇
  2020年   5篇
  2019年   8篇
  2018年   10篇
  2017年   9篇
  2016年   28篇
  2015年   32篇
  2014年   24篇
  2013年   38篇
  2012年   53篇
  2011年   44篇
  2010年   37篇
  2009年   26篇
  2008年   49篇
  2007年   55篇
  2006年   30篇
  2005年   40篇
  2004年   51篇
  2003年   35篇
  2002年   33篇
  2001年   13篇
  2000年   8篇
  1999年   10篇
  1998年   8篇
  1997年   9篇
  1996年   9篇
  1995年   9篇
  1994年   6篇
  1993年   3篇
  1992年   7篇
  1991年   8篇
  1990年   10篇
  1989年   9篇
  1988年   6篇
  1987年   9篇
  1986年   8篇
  1984年   8篇
  1983年   5篇
  1982年   5篇
  1980年   7篇
  1979年   5篇
  1978年   4篇
  1975年   3篇
  1974年   6篇
  1973年   4篇
  1972年   2篇
  1970年   3篇
  1967年   2篇
  1966年   2篇
排序方式: 共有822条查询结果,搜索用时 0 毫秒
81.
New inhibitors of palmitoyl-CoA oxidation are based on the introduction of nitrogen heterocycles in the ‘Western Portion’ of the molecule. SAR studies led to the discovery of CVT-4325 (shown), a potent FOXi (IC50 = 380 nM rat mitochondria) with favorable PK properties (F = 93%, t1/2 = 13.6 h, dog).  相似文献   
82.

Background

Cysteine string protein (CSPα) is a synaptic vesicle protein that displays unique anti-neurodegenerative properties. CSPα is a member of the conserved J protein family, also called the Hsp40 (heat shock protein of 40 kDa) protein family, whose importance in protein folding has been recognized for many years. Deletion of the CSPα in mice results in knockout mice that are normal for the first 2–3 weeks of life followed by an unexplained presynaptic neurodegeneration and premature death. How CSPα prevents neurodegeneration is currently not known. As a neuroprotective synaptic vesicle protein, CSPα represents a promising therapeutic target for the prevention of neurodegenerative disorders.

Methodology/Principal Findings

Here, we demonstrate that the flavonoid quercetin promotes formation of stable CSPα-CSPα dimers and that quercetin-induced dimerization is dependent on the unique cysteine string region. Furthermore, in primary cultures of Lymnaea neurons, quercetin induction of CSPα dimers correlates with an inhibition of synapse formation and synaptic transmission suggesting that quercetin interfers with CSPα function. Quercetin''s action on CSPα is concentration dependent and does not promote dimerization of other synaptic proteins or other J protein family members and reduces the assembly of CSPα:Hsc70 units (70kDa heat shock cognate protein).

Conclusions/Significance

Quercetin is a plant derived flavonoid and popular nutritional supplement proposed to prevent memory loss and altitude sickness among other ailments, although its precise mechanism(s) of action has been unclear. In view of the therapeutic promise of upregulation of CSPα and the undesired consequences of CSPα dysfunction, our data establish an essential proof of principle that pharmaceutical agents can selectively target the neuroprotective J protein CSPα.  相似文献   
83.
In addition to the important role of abscisic acid (ABA) in abiotic stress signalling, basal and high ABA levels appear to have a negative effect on disease resistance. Using the ABA-deficient sitiens tomato ( Solanum lycopersicum ) mutant and different application methods of exogenous ABA, we demonstrated the influence of this plant hormone on disease progression of Erwinia chrysanthemi . This necrotrophic plant pathogenic bacterium is responsible for soft rot disease on many plant species, causing maceration symptoms mainly due to the production and secretion of pectinolytic enzymes. On wild-type (WT) tomato cv. Moneymaker E. chrysanthemi leaf inoculation resulted in maceration both within and beyond the infiltrated zone of the leaf, but sitiens showed a very low occurrence of tissue maceration, which never extended the infiltrated zone. A single ABA treatment prior to infection eliminated the effect of pathogen restriction in sitiens , while repeated ABA spraying during plant development rendered both WT and sitiens very susceptible. Quantification of E. chrysanthemi populations inside the leaf did not reveal differences in bacterial growth between sitiens and WT. Sitiens was not more resistant to pectinolytic cell-wall degradation, but upon infection it showed a faster and stronger activation of defence responses than WT, such as hydrogen peroxide accumulation, peroxidase activation and cell-wall fortifications. Moreover, the rapid activation of sitiens peroxidases was also observed after application of bacteria-free culture filtrate containing E. chrysanthemi cell-wall-degrading enzymes and was absent during infection with an out E. chrysanthemi mutant impaired in secretion of these extracellular enzymes.  相似文献   
84.
85.
David B. Knaff  Bob B. Buchanan 《BBA》1975,376(3):549-560
Chromatophores isolated from the purple sulfur bacterium Chromatium and the green sulfur bacterium Chlorobium exhibit absorbance changes in the cytochrome -band region consistent with the presence of a b-type cytochrome. Cytochrome content determined by reduced minus oxidized difference spectra and by heme analysis suggests that each bacterium contains one cytochrome b per molecule of photochemically active bacteriochlorophyll (reaction-center bacteriochlorophyll).

The b-type cytochrome in Chromatium has an -band maximum at 560 nm and a midpoint oxidation-reduction potential of −5 mV at pH 8.0. The b-type cytochrome in Chlorobium has an -band maximum at 564 nm and an apparent midpoint oxidation-reduction potential near −90 mV.

Chromatophores isolated from both Chromatium and Chlorobium cells catalyze a photoreduction of cytochrome b that is enhanced in the presence of antimycin A. Antimycin A and 2-n-heptyl-4-hydroxyquinoline-N-oxide inhibit endogenous (but not phenazine methosulfate-mediated) cyclic photophosphorylation in Chromatium chromatophores and non-cyclic electron flow from Na2S to NADP in Chlorobium chromatophores. These observations suggest that b-type cytochromes may function in electron transport reactions in photosynthetic sulfur bacteria.  相似文献   

86.
1. Cell-free extracts of the photosynthetic bacterium Chlorobium thiosulfatophilum, strains 8327 and Tassajara, were assayed for ribulose 1,5-diphosphate (RuDP) carboxylase and phosphoribulokinase-the two enzymes peculiar to the reductive pentose phosphate cycle. 2. RuDP carboxylase was consistently absent in strain 8327. The Tassajara strain showed a low RuDP-dependent CO2 fixation activity that was somewhat higher in cells following transatlantic air shipment than in freshly grown cells. The stability and behaviour of this activity in sucrose density gradients were similar to those described by other workers. 3. The radioactive carboxylation products formed in the presence of RuDP by enzyme preparations from the Tassajara strain did not include 3-phosphoglycerate-the known product of the RuDP carboxylase reaction, but instead consisted of the unrelated acids glutamate, aspartate and malate. 4. Phosphoribulokinase was absent in all preparations of the two Chlorobium strains tested. By contrast, phosphoribulokinase as well as RuDP carboxylase were readily demonstrated in preparations from pea chloroplasts and the photosynthetic bacterium Rhodospirillum rubrum. 5. It is concluded that C. thiosulfatophilum appears to lack RuDP carboxylase, phosphoribulokinase, and hence, the reductive pentose phosphate cycle.Support of a J. S. Guggenheim Fellowship is gratefully acknowledged  相似文献   
87.
Our objective was to investigate the long-term metabolic effects of postnatal essential fatty acid deficiency (EFAD). Mouse dams were fed an EFAD diet or an isoenergetic control diet 4 days before delivery and throughout lactation. The pups were weaned to standard diet (STD) and were later subdivided into two groups: receiving high fat diet (HFD) or STD. Body composition, energy expenditure, food intake and leptin levels were analyzed in adult offspring. Blood glucose and plasma insulin concentrations were measured before and during a glucose tolerance test. EFAD offspring fed STD were leaner with lower plasma leptin and insulin concentrations compared to controls. EFAD offspring fed HFD were resistant to diet-induced obesity, had higher energy expenditure and lower levels of plasma leptin and insulin compared to controls. These results indicate that the fatty acid composition during lactation is important for body composition and glucose tolerance in the adult offspring.  相似文献   
88.
89.
The glycinebetaine content of plants can be determined by simple isocratic high performance liquid chromatography. The method is applicable to extracts from a wide range of species and, in most cases, is suitably rapid and specific to be preferable to other methods of analysis. The chromatographic system employed permits accurate and sensitive ultraviolet detection, free of most interferences. Because the principle plant carbohydrates elute well before glycine betaine, preparative ion exchange procedures can be simplified. Twenty-seven species, mostly inland halophytes, were screened by these methods and 13 were found to be glycinebetaine accumulators. On a dry weight basis, the glycinebetaine content of Salicornia europaea L. actually declined with exposure to progressively higher levels of NaCl. When expressed as a proportion of plant organic matter, however, patterns were more typical (up to 7.7% at higher salt concentrations).  相似文献   
90.
T cell stimulation via the TCR complex (TCR/CD3 complex) results in activation of the guanine nucleotide binding proteins encoded by the ras protooncogenes (p21ras). In the present study we show that the activation state of p21ras in T lymphocytes can also be controlled by triggering of the CD2 Ag. The activation state of p21ras is controlled by GTP levels on p21ras. In T cells stimulation of protein kinase C is able to induce an accumulation of "active" p21ras-GTP complexes due to an inhibitory effect of protein kinase C stimulation on the intrinsic GTPase activity of p21ras. The regulatory effect of protein kinase C on p21ras GTPase activity appears to be mediated via regulation of GAP, the GTPase activating protein of p21ras. In the present report, we demonstrate that the TCR/CD3 complex and the CD2 Ag control the accumulation of p21ras-GTP complexes via a regulatory effect on p21ras GTPase activity. The TCR/CD3 complex and CD2 Ag are also able to control the cellular activity of GAP. These data demonstrate that p21ras is part of the signal transduction responses controlled by the CD2 Ag, and reveal that the TCR/CD3 complex and CD2 Ag control the activation state of p21ras via a similar mechanism.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号