首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8993篇
  免费   637篇
  国内免费   476篇
  10106篇
  2024年   10篇
  2023年   81篇
  2022年   190篇
  2021年   324篇
  2020年   232篇
  2019年   265篇
  2018年   282篇
  2017年   231篇
  2016年   320篇
  2015年   461篇
  2014年   578篇
  2013年   638篇
  2012年   741篇
  2011年   703篇
  2010年   413篇
  2009年   372篇
  2008年   425篇
  2007年   419篇
  2006年   367篇
  2005年   359篇
  2004年   292篇
  2003年   299篇
  2002年   241篇
  2001年   195篇
  2000年   193篇
  1999年   162篇
  1998年   109篇
  1997年   102篇
  1996年   104篇
  1995年   101篇
  1994年   78篇
  1993年   78篇
  1992年   127篇
  1991年   103篇
  1990年   72篇
  1989年   72篇
  1988年   66篇
  1987年   49篇
  1986年   41篇
  1985年   53篇
  1984年   33篇
  1983年   24篇
  1982年   19篇
  1981年   10篇
  1979年   10篇
  1978年   6篇
  1977年   7篇
  1971年   7篇
  1970年   7篇
  1966年   7篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
91.
92.
93.
Saccharomyces cerevisiae protein kinase Sch9 is one of the downstream effectors of the target of rapamycin (TOR) complex 1 and plays multiple roles in stress resistance, longevity and nutrient sensing. However, the functions of Sch9 orthologs in filamentous fungi, particularly in pathogenic species, have not been characterized to date. Here, we investigated biological and genetic functions of FgSch9 in Fusarium graminearum. The FgSCH9 deletion mutant (ΔFgSch9) was defective in aerial hyphal growth, hyphal branching and conidial germination. The mutant exhibited increased sensitivity to osmotic and oxidative stresses, cell wall‐damaging agents, and to rapamycin, while showing increased thermal tolerance. We identified FgMaf1 as one of the FgSch9‐interacting proteins that plays an important role in regulating mycotoxin biosynthesis and virulence of F. graminearum. Co‐immunoprecipitation and affinity capture‐mass spectrometry assays showed that FgSch9 also interacts with FgTor and FgHog1. More importantly, both ΔFgSch9 and FgHog1 null mutant (ΔFgHog1) exhibited increased sensitivity to osmotic and oxidative stresses. This defect was more severe in the FgSch9/FgHog1 double mutant. Taken together, we propose that FgSch9 serves as a mediator of the TOR and high osmolarity glycerol pathways, and regulates vegetative differentiation, multiple stress responses and secondary metabolism in F. graminearum.  相似文献   
94.
Schlosser K  Gu J  Lam JC  Li Y 《Nucleic acids research》2008,36(14):4768-4777
Herein, we sought new or improved endoribonucleases based on catalytic DNA molecules known as deoxyribozymes. The current repertoire of RNA-cleaving deoxyribozymes can cleave nearly all of the 16 possible dinucleotide junctions with rates of at least 0.1/min, with the exception of pyrimidine–pyrimidine (pyr–pyr) junctions, which are cleaved 1–3 orders of magnitude slower. We conducted four separate in vitro selection experiments to target each pyr–pyr dinucleotide combination (i.e. CC, UC, CT and UT) within a chimeric RNA/DNA substrate. We used a library of DNA molecules containing only 20 random-sequence nucleotides, so that all possible sequence permutations could be sampled in each experiment. From a total of 245 clones, we identified 22 different sequence families, of which 21 represented novel deoxyribozyme motifs. The fastest deoxyribozymes exhibited kobs values (single-turnover, intermolecular format) of 0.12/min, 0.04/min, 0.13/min and 0.15/min against CC, UC, CT and UT junctions, respectively. These values represent a 6- to 8-fold improvement for CC and UC junctions, and a 1000- to 1600-fold improvement for CT and UT junctions, compared to the best rates reported previously under identical reaction conditions. The same deoxyribozymes exhibited ~1000-fold lower activity against all RNA substrates, but could potentially be improved through further in vitro evolution and engineering.  相似文献   
95.
Xu Y  Xu G  Liu B  Gu G 《Nucleic acids research》2007,35(19):e126
Cre/LoxP-based DNA recombination has been used to introduce desired DNA rearrangements in various organisms, having for example, greatly assisted genetic analyses in mice. For most applications, single gene promoters are used to drive Cre production for conditional gene activation/inactivation or lineage-tracing experiments. Such a manipulation introduces Cre in all cells in which the utilized promoter is active. To overcome the limited selectivity of single promoters for cell-type-specific recombination, we have explored the ‘dual promoter combinatorial control’ of Cre activity, so that Cre activity could be restricted to cells that express dual protein markers. We efficiently reconstituted Cre activity from two modified, inactive Cre fragments. Cre re-association was greatly enhanced by fusing the Cre fragments separately to peptides that can form a tight antiparallel leucine zipper. The co-expressed Cre fusion fragments showed substantial activity in cultured cells. As proof of principle of the utility of this technique in vivo for manipulating genes specifically in dual-marker-positive cells, we expressed each inactive Cre fragments in transgenic mice via individual promoters. Result showed the effective reconstitution of Cre activates LoxP recombination in the co-expressing cells.  相似文献   
96.
Jiang B  Yap MK  Leung KH  Ng PW  Fung WY  Lam WW  Gu YS  Yip SP 《PloS one》2011,6(5):e19587

Background

The paired box 6 (PAX6) gene is considered as a master gene for eye development. Linkage of myopia to the PAX6 region on chromosome 11p13 was shown in several studies, but the results for association between myopia and PAX6 were inconsistent so far.

Methodology/Principal Findings

We genotyped 16 single nucleotide polymorphisms (SNPs) in the PAX6 gene and its regulatory regions in an initial study for 300 high myopia cases and 300 controls (Group 1), and successfully replicated the positive results with another independent group of 299 high myopia cases and 299 controls (Group 2). Five SNPs were genotyped in the replication study. The spherical equivalent of subjects with high myopia was ≤−8.0 dioptres. The PLINK package was used for genetic data analysis. No association was found between each of the SNPs and high myopia. However, exhaustive sliding-window haplotype analysis highlighted an important role for rs12421026 because haplotypes containing this SNP were found to be associated with high myopia. The most significant results were given by the 4-SNP haplotype window consisting of rs2071754, rs3026393, rs1506 and rs12421026 (P = 3.54×10−10, 4.06×10−11 and 1.56×10−18 for Group 1, Group 2 and Combined Group, respectively) and the 3-SNP haplotype window composed of rs3026393, rs1506 and rs12421026 (P = 5.48×10−10, 7.93×10−12 and 6.28×10−23 for the three respective groups). The results remained significant after correction for multiple comparisons by permutations. The associated haplotyes found in a previous study were also successfully replicated in this study.

Conclusions/Significance

PAX6 haplotypes are associated with susceptibility to the development of high myopia in Chinese. The PAX6 locus plays a role in high myopia.  相似文献   
97.

Key message

Thirty significant associations between 22 SNPs and five plant architecture component traits in Chinese upland cotton were identified via GWAS. Four peak SNP loci located on chromosome D03 were simultaneously associated with more plant architecture component traits. A candidate gene, Gh_D03G0922, might be responsible for plant height in upland cotton.

Abstract

A compact plant architecture is increasingly required for mechanized harvesting processes in China. Therefore, cotton plant architecture is an important trait, and its components, such as plant height, fruit branch length and fruit branch angle, affect the suitability of a cultivar for mechanized harvesting. To determine the genetic basis of cotton plant architecture, a genome-wide association study (GWAS) was performed using a panel composed of 355 accessions and 93,250 single nucleotide polymorphisms (SNPs) identified using the specific-locus amplified fragment sequencing method. Thirty significant associations between 22 SNPs and five plant architecture component traits were identified via GWAS. Most importantly, four peak SNP loci located on chromosome D03 were simultaneously associated with more plant architecture component traits, and these SNPs were harbored in one linkage disequilibrium block. Furthermore, 21 candidate genes for plant architecture were predicted in a 0.95-Mb region including the four peak SNPs. One of these genes (Gh_D03G0922) was near the significant SNP D03_31584163 (8.40 kb), and its Arabidopsis homologs contain MADS-box domains that might be involved in plant growth and development. qRT-PCR showed that the expression of Gh_D03G0922 was upregulated in the apical buds and young leaves of the short and compact cotton varieties, and virus-induced gene silencing (VIGS) proved that the silenced plants exhibited increased PH. These results indicate that Gh_D03G0922 is likely the candidate gene for PH in cotton. The genetic variations and candidate genes identified in this study lay a foundation for cultivating moderately short and compact varieties in future Chinese cotton-breeding programs.
  相似文献   
98.
DNA loop heterologies are products of normal DNA metabolism and can lead to severe genomic instability if unrepaired. To understand how human cells process DNA loop structures, a set of circular heteroduplexes containing a 30-nucleotide loop were constructed and tested for repair in vitro by human cell nuclear extracts. We demonstrate here that, in addition to the previously identified 5' nick-directed loop repair pathway (Littman, S. J., Fang, W. H., and Modrich, P. (1999) J. Biol. Chem. 274, 7474-7481), human cells can process large DNA loop heterologies in a loop-directed manner. The loop-directed repair specifically removes the loop structure and occurs only in the looped strand, and appears to require limited DNA synthesis. Like the nick-directed loop repair, the loop-directed repair is independent of many known DNA repair pathways, including DNA mismatch repair and nucleotide excision repair. In addition, our data also suggest that an aphidicolin-sensitive DNA polymerase is involved in the excision step of the nick-directed loop repair pathway.  相似文献   
99.
100.
重组大肠杆菌表达铜绿假单胞菌溶血性磷脂酶C   总被引:1,自引:0,他引:1  
[目的]构建产溶血性磷脂酶C (Hemolytic Phospholipase C,PLCH)的重组大肠杆菌(Escherich coli菌株,并初步优化其发酵条件.[方法]首先利用卵黄硼砂平板分离法筛选到一株产磷脂酶C(Phospholipase C,PLC)活性较高的菌株,命名为铜绿假单胞菌(Pseudomonas aeruginosa)41;进一步以P.aeruginosa 41基因组DNA为模板设计引物,PCR扩增获得溶血性磷脂酶C(PLCH)基因,构建重组大肠杆菌表达质粒并转化大肠杆菌E.coli BL21 (DE3);筛选转化子并检测PLC活性和溶血能力,并初步优化其发酵条件.[结果]成功构建了重组大肠杆菌E.coli BL21(DE3) /pET28a-plcH;在硼砂卵黄平板上对重组菌进行PLC活性测定,显示重组菌有明显的磷脂酶C活性;在哥伦比亚血琼脂平板上对重组菌进行溶血性试验,表明PLCH具有较强的溶血活性;初步优化摇瓶发酵条件为:5%转接量,37℃、200 r/min下培养4h添加IPTG至终浓度为0.9 mmol/L,转为25℃、150 r/min诱导培养14 h;优化后重组菌的酶活可达到722.89±0.47 U/mL.[结论]本文成功构建了一株产溶血性磷脂酶C活性较高的重组大肠杆菌菌株,并通过优化发酵条件使其酶活达到了722.89±0.47 U/mL,本实验在国内首次实现了铜绿假单胞菌来源的溶血性磷脂酶C基因在大肠杆菌的胞内表达,该研究为研究磷脂酶C产业化奠定了一定的基础.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号