首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   45720篇
  免费   3882篇
  国内免费   3548篇
  53150篇
  2024年   108篇
  2023年   575篇
  2022年   1269篇
  2021年   2150篇
  2020年   1443篇
  2019年   1738篇
  2018年   1724篇
  2017年   1246篇
  2016年   1807篇
  2015年   2702篇
  2014年   3234篇
  2013年   3416篇
  2012年   4151篇
  2011年   3716篇
  2010年   2322篇
  2009年   1989篇
  2008年   2311篇
  2007年   2074篇
  2006年   1915篇
  2005年   1547篇
  2004年   1374篇
  2003年   1170篇
  2002年   980篇
  2001年   798篇
  2000年   801篇
  1999年   745篇
  1998年   482篇
  1997年   401篇
  1996年   422篇
  1995年   389篇
  1994年   380篇
  1993年   255篇
  1992年   412篇
  1991年   315篇
  1990年   359篇
  1989年   301篇
  1988年   223篇
  1987年   200篇
  1986年   180篇
  1985年   167篇
  1984年   167篇
  1983年   125篇
  1982年   111篇
  1981年   103篇
  1980年   69篇
  1979年   99篇
  1978年   75篇
  1977年   76篇
  1975年   82篇
  1973年   71篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
31.
Phospholipase C-mediated hydrolysis of phosphatidylinositol 4,5-bisphosphate generates diacylglycerol, inositol 1,4,5-trisphosphate and protons, all of which can regulate TRPV1 activity via different mechanisms. Here we explored the possibility that the diacylglycerol metabolites 2-arachidonoylglycerol and 1-arachidonoylglycerol, and not metabolites of these monoacylglycerols, activate TRPV1 and contribute to this signaling cascade. 2-Arachidonoylglycerol and 1-arachidonoylglycerol activated native TRPV1 on vascular sensory nerve fibers and heterologously expressed TRPV1 in whole cells and inside-out membrane patches. The monoacylglycerol lipase inhibitors methylarachidonoyl-fluorophosphonate and JZL184 prevented the metabolism of deuterium-labeled 2-arachidonoylglycerol and deuterium-labeled 1-arachidonoylglycerol in arterial homogenates, and enhanced TRPV1-mediated vasodilator responses to both monoacylglycerols. In mesenteric arteries from TRPV1 knock-out mice, vasodilator responses to 2-arachidonoylglycerol were minor. Bradykinin and adenosine triphosphate, ligands of phospholipase C-coupled membrane receptors, increased the content of 2-arachidonoylglycerol in dorsal root ganglia. In HEK293 cells expressing the phospholipase C-coupled histamine H1 receptor, exposure to histamine stimulated the formation of 2-AG, and this effect was augmented in the presence of JZL184. These effects were prevented by the diacylglycerol lipase inhibitor tetrahydrolipstatin. Histamine induced large whole cell currents in HEK293 cells co-expressing TRPV1 and the histamine H1 receptor, and the TRPV1 antagonist capsazepine abolished these currents. JZL184 increased the histamine-induced currents and tetrahydrolipstatin prevented this effect. The calcineurin inhibitor ciclosporin and the endogenous “entourage” compound palmitoylethanolamide potentiated the vasodilator response to 2-arachidonoylglycerol, disclosing TRPV1 activation of this monoacylglycerol at nanomolar concentrations. Furthermore, intracerebroventricular injection of JZL184 produced TRPV1-dependent antinociception in the mouse formalin test. Our results show that intact 2-arachidonoylglycerol and 1-arachidonoylglycerol are endogenous TRPV1 activators, contributing to phospholipase C-dependent TRPV1 channel activation and TRPV1-mediated antinociceptive signaling in the brain.  相似文献   
32.
Posterior Capsular Opacification (PCO) is the capsule fibrosis developed on implanted IntraOcular Lens (IOL) by the de-differentiation of Lens Epithelial Cells (LECs) undergoing Epithelial Mesenchymal Transition (EMT). Literature has shown that the incidence of PCO is multifactorial including the patient''s age or disease, surgical technique, and IOL design and material. Reports comparing hydrophilic and hydrophobic acrylic IOLs have shown that the former has more severe PCO. On the other hand, we have previously demonstrated that the adhesion of LECs is favored on hydrophobic compared to hydrophilic materials. By combining these two facts and contemporary knowledge in PCO development via the EMT pathway, we propose a biomimetically inspired strategy to promote LEC adhesion without de-differentiation to reduce the risk of PCO development. By surface grafting of a cell adhesion molecule (RGD peptide) onto the conventional hydrophilic acrylic IOL material, the surface-functionalized IOL can be used to reconstitute a capsule-LEC-IOL sandwich structure, which has been considered to prevent PCO formation in literature. Our results show that the innovative biomaterial improves LEC adhesion, while also exhibiting similar optical (light transmittance, optical bench) and mechanical (haptic compression force, IOL injection force) properties compared to the starting material. In addition, compared to the hydrophobic IOL material, our bioactive biomaterial exhibits similar abilities in LEC adhesion, morphology maintenance, and EMT biomarker expression, which is the crucial pathway to induce PCO. The in vitro assays suggest that this biomaterial has the potential to reduce the risk factor of PCO development.  相似文献   
33.
A low-protein diet supplemented with ketoacids maintains nutritional status in patients with diabetic nephropathy. The activation of autophagy has been shown in the skeletal muscle of diabetic and uremic rats. This study aimed to determine whether a low-protein diet supplemented with ketoacids improves muscle atrophy and decreases the increased autophagy observed in rats with type 2 diabetic nephropathy. In this study, 24-week-old Goto-Kakizaki male rats were randomly divided into groups that received either a normal protein diet (NPD group), a low-protein diet (LPD group) or a low-protein diet supplemented with ketoacids (LPD+KA group) for 24 weeks. Age- and weight-matched Wistar rats served as control animals and received a normal protein diet (control group). We found that protein restriction attenuated proteinuria and decreased blood urea nitrogen and serum creatinine levels. Compared with the NPD and LPD groups, the LPD+KA group showed a delay in body weight loss, an attenuation in soleus muscle mass loss and a decrease of the mean cross-sectional area of soleus muscle fibers. The mRNA and protein expression of autophagy-related genes, such as Beclin-1, LC3B, Bnip3, p62 and Cathepsin L, were increased in the soleus muscle of GK rats fed with NPD compared to Wistar rats. Importantly, LPD resulted in a slight reduction in the expression of autophagy-related genes; however, these differences were not statistically significant. In addition, LPD+KA abolished the upregulation of autophagy-related gene expression. Furthermore, the activation of autophagy in the NPD and LPD groups was confirmed by the appearance of autophagosomes or autolysosomes using electron microscopy, when compared with the Control and LPD+KA groups. Our results showed that LPD+KA abolished the activation of autophagy in skeletal muscle and decreased muscle loss in rats with type 2 diabetic nephropathy.  相似文献   
34.
Bacillus sp. strain FJAT-13831 was isolated from the no. 1 pit soil of Emperor Qin''s Terracotta Warriors in Xi''an City, People''s Republic of China. The isolate showed a close relationship to the Bacillus cereus group. The draft genome sequence of Bacillus sp. FJAT-13831 was 4,425,198 bp in size and consisted of 5,567 genes (protein-coding sequences [CDS]) with an average length of 782 bp and a G+C value of 36.36%.  相似文献   
35.
Pharmacokinetics of novel immunostimulating drug kamantane was studied by using gas-liquid chromatography in experiments on rats. It was found that kemantane biotransformed rapidly after oral administration with the forming of active metabolite. Kemantane and its metabolites are distributed rapidly from the blood to organs. The drug is eliminated from the organism of rats as metabolite.  相似文献   
36.
Human pluripotent stem cells (PSCs) are presumed to have robust DNA repair pathways to ensure genome stability. PSCs likely need to protect against mutations that would otherwise be propagated throughout all tissues of the developing embryo. How these cells respond to genotoxic stress has only recently begun to be investigated. Although PSCs appear to respond to certain forms of damage more efficiently than somatic cells, some DNA damage response pathways such as the replication stress response may be lacking. Not all DNA repair pathways, including the DNA mismatch repair (MMR) pathway, have been well characterized in PSCs to date. MMR maintains genomic stability by repairing DNA polymerase errors. MMR is also involved in the induction of cell cycle arrest and apoptosis in response to certain exogenous DNA-damaging agents. Here, we examined MMR function in PSCs. We have demonstrated that PSCs contain a robust MMR pathway and are highly sensitive to DNA alkylation damage in an MMR-dependent manner. Interestingly, the nature of this alkylation response differs from that previously reported in somatic cell types. In somatic cells, a permanent G2/M cell cycle arrest is induced in the second cell cycle after DNA damage. The PSCs, however, directly undergo apoptosis in the first cell cycle. This response reveals that PSCs rely on apoptotic cell death as an important defense to avoid mutation accumulation. Our results also suggest an alternative molecular mechanism by which the MMR pathway can induce a response to DNA damage that may have implications for tumorigenesis.  相似文献   
37.
Summary Enzymatic hydrolysis of racemic 3-acetylthio-2-methylpropionic methyl ester catalyzed by bovine pancreatic protease and Mucor javanicus lipase showed opposite enantioselecivity. A tandem hydrolysis of the ester catalyzed by these two enzymes gives enantiomerically enriched (S)-3-acetylthio-2-methylpropionic acid, a building block of captopril.  相似文献   
38.
Respiratory motion blurs the standardized uptake value (SUV) and leads to a further signal reduction and changes in the SUV maxima. 4D PET can provide accurate tumor localization as a function of the respiratory phase in PET/CT imaging. We investigated thoracic tumor motion by respiratory 4D CT and assessed its deformation effect on the SUV changes in 4D PET imaging using clinical patient data. Twelve radiation oncology patients with thoracic cancer, including five lung cancer patients and seven esophageal cancer patients, were recruited to the present study. The 4D CT and PET image sets were acquired and reconstructed for 10 respiratory phases across the whole respiratory cycle. The optical flow method was applied to the 4D CT data to calculate the maximum displacements of the tumor motion in respiration. Our results show that increased tumor motion has a significant degree of association with the SUVmax loss for lung cancer. The results also show that the SUVmax loss has a higher correlation with tumors located at lower lobe of lung or at lower regions of esophagus.  相似文献   
39.
We have addressed the role of the F-box helicase 1 (Fbh1) protein during genome maintenance in mammalian cells. For this, we generated two mouse embryonic stem cell lines deficient for Fbh1: one with a homozygous deletion of the N-terminal F-box domain (Fbh1f/f), and the other with a homozygous disruption (Fbh1?/?). Consistent with previous reports of Fbh1-deficiency in vertebrate cells, we found that Fbh1?/? cells show a moderate increase in Rad51 localization to DNA damage, but no clear defect in chromosome break repair. In contrast, we found that Fbh1f/f cells show a decrease in Rad51 localization to DNA damage and increased cytoplasmic localization of Rad51. However, these Fbh1f/f cells show no clear defects in chromosome break repair. Since some Rad51 partners and F-box-associated proteins (Skp1-Cul1) have been implicated in progression through mitosis, we considered whether Fbh1 might play a role in this process. To test this hypothesis, we disrupted mitosis using catalytic topoisomerase II inhibitors (bisdioxopiperazines), which inhibit chromosome decatenation. We found that both Fbh1f/f and Fbh1?/? cells show hypersensitivity to topoisomerase II catalytic inhibitors, even though the degree of decatenation stress was not affected. Furthermore, following topoisomerase II catalytic inhibition, both Fbh1-deficient cell lines show substantial defects in anaphase separation of chromosomes. These results indicate that Fbh1 is important for restoration of normal mitotic progression following decatenation stress.  相似文献   
40.
Amiloride is a reversible inhibitor of the Na+/H+ antiporter which acts at the external aspect of the transport system. The kinetics of inhibition of the Na+/H+ antiporter with amiloride have been controversial, with the usual finding of simple competitive inhibition, but with other reports of mixed and noncompetitive inhibition of the transporter by amiloride. The present experiments demonstrate that the chloride content of the external transport buffer affects the kinetics of amiloride inhibition. Either simple competitive or mixed inhibition by amiloride was observed in the same vesicle preparations depending on the presence of chloride or gluconate in the buffer. The effect of chloride on the inhibitory effect of amiloride was dependent on the concentration of chloride and amiloride. Similar effects were observed with more potent analogues of amiloride. These findings suggest that the external aspect of the antiporter has a site or sites at which the inhibitory effects of amiloride on the Na+/H+ antiporter can be modified by chloride, even though chloride has only slight effects on the kinetics of the Na+/H+ antiporter in the absence of amiloride.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号