首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   157100篇
  免费   5804篇
  国内免费   6852篇
  169756篇
  2024年   179篇
  2023年   950篇
  2022年   2141篇
  2021年   3498篇
  2020年   2449篇
  2019年   2940篇
  2018年   13942篇
  2017年   12200篇
  2016年   9979篇
  2015年   4778篇
  2014年   5447篇
  2013年   5527篇
  2012年   10258篇
  2011年   17953篇
  2010年   15020篇
  2009年   11018篇
  2008年   13057篇
  2007年   14240篇
  2006年   3054篇
  2005年   2766篇
  2004年   2791篇
  2003年   2703篇
  2002年   2068篇
  2001年   1278篇
  2000年   1167篇
  1999年   923篇
  1998年   607篇
  1997年   542篇
  1996年   548篇
  1995年   474篇
  1994年   473篇
  1993年   392篇
  1992年   527篇
  1991年   406篇
  1990年   343篇
  1989年   308篇
  1988年   261篇
  1987年   234篇
  1986年   204篇
  1985年   187篇
  1984年   167篇
  1983年   169篇
  1982年   117篇
  1981年   86篇
  1980年   76篇
  1979年   87篇
  1974年   70篇
  1973年   66篇
  1972年   306篇
  1971年   307篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
931.

Background  

High concentrations of matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) have been identified in the cervical mucus plug (CMP) at term of pregnancy. Their physiological and pathophysiological implications, however, remain to be elucidated, and CMPs from preterm labor have never been examined. This study was therefore conducted to describe the concentrations of MMP-2, TIMP-1, MMP-8 and MMP-9 in the CMP in relation to gestational age, IL-8 as an indicator of inflammation, compartment of the CMP, and preterm labor.  相似文献   
932.
A novel strategy based on carboxy group derivatization is presented for specific characterization of phosphopeptides. By tagging the carboxy group with 1‐(2‐pyrimidyl) piperazine (PP), the ion charge states of phosphopeptides can be largely enhanced, showing great advantages for sequencing phosphorylated peptides with electron‐transfer dissociation MS. Besides, after PP‐derivatization, most non‐specific bindings can be avoided by eliminating the interaction between the carboxy group and TiO2, greatly improving the specificity of TiO2‐based phosphopeptide enrichment strategy. Moreover, being tagged with a hydrophobic group, the retention time of phosphopeptides in RPLC can be prolonged, overcoming the difficulty of separating phosphopeptides in RPLC‐based approach. Together with several other advantages, such as ease of handling, rapid reaction time, broad applicability and good reproducibility, this PP‐derivatization method is promising for high‐throughput phosphoproteome research.  相似文献   
933.
Benzylisoquinoline alkaloids (BIAs) are a group of specialized metabolites found predominantly in the plant order Ranunculales. Approximately 2500 naturally occurring BIAs have been identified, many of which possess a variety of potent biological and pharmacological properties. The initial BIA skeleton is formed via condensation by a unique enzyme, norcoclaurine synthase, of the l-tyrosine derivatives dopamine and 4-hydroxyphenylacetaldehyde, yielding (S)-norcoclaurine as a central intermediate. The vast diversity of BIA structures is subsequently derived from (1) transformation of the basic BIA backbone by oxidative enzymes, particularly cytochromes P450 and FAD-linked oxidases, and (2) further structural and functional group modification by tailoring enzymes, which also include various reductases, dioxygenases, acetyltransferases, and carboxylesterases. Most of the biosynthetic enzymes responsible for the biosynthesis of major BIAs (i.e. morphine, noscapine, papaverine, and sanguinarine) in opium poppy (Papaver somniferum), and other compounds (e.g. berberine) in related plants, have been isolated and partially characterized. Diversity in BIA metabolism is driven by the modular and repetitive recruitment, and subsequent neo-functionalization, of a limited number of ancestral enzymes. In this review, BIA biosynthetic enzymes are discussed in the context of their respective families, facilitating exploration of common phylogeny and biochemical mechanisms.  相似文献   
934.
Transformation-associated recombination (TAR) has been widely used to assemble large DNA constructs. One of the significant obstacles hindering assembly efficiency is the presence of error-prone DNA repair pathways in yeast, which results in vector backbone recircularization or illegitimate recombination products. To increase TAR assembly efficiency, we prepared a dual-selective TAR vector, pGFCS, by adding a PADH1-URA3 cassette to a previously described yeast-bacteria shuttle vector, pGF, harboring a PHIS3-HIS3 cassette as a positive selection marker. This new cassette works as a negative selection marker to ensure that yeast harboring a recircularized vector cannot propagate in the presence of 5-fluoroorotic acid. To prevent pGFCS bearing ura3 from recombining with endogenous ura3-52 in the yeast genome, a highly transformable Saccharomyces cerevisiae strain, VL6-48B, was prepared by chromosomal substitution of ura3-52 with a transgene conferring resistance to blasticidin. A 55-kb genomic fragment of monkeypox virus encompassing primary detection targets for quantitative PCR was assembled by TAR using pGFCS in VL6-48B. The pGFCS-mediated TAR assembly showed a zero rate of vector recircularization and an average correct assembly yield of 79% indicating that the dual-selection strategy provides an efficient approach to optimizing TAR assembly.  相似文献   
935.
The recent COVID-19 pandemic poses a global health emergency. Cellular entry of the causative agent SARS-CoV-2 is mediated by its spike protein interacting with cellular receptor-human angiotensin converting enzyme 2 (ACE2). Here, by using lentivirus based pseudotypes bearing spike protein, we demonstrated that entry of SARS-CoV-2 into host cells was dependent on clathrin-mediated endocytosis, and phosphoinositides played essential roles during this process. In addition, we showed that the intracellular domain and the catalytic activity of ACE2 were not required for efficient virus entry. Finally, we showed that the current predominant Delta variant, although with high infectivity and high syncytium formation, also entered cells through clathrin-mediated endocytosis. These results provide new insights into SARS-CoV-2 cellular entry and present proof of principle that targeting viral entry could be an effective way to treat different variant infections.  相似文献   
936.
The first biochemical and structural characterization of the full-length active photoreceptor BlrP1 from Klebsiella pneumoniae was recently reported by Barends et al. [Nature 459:1015–1018, (2009)]. The light-regulated catalytic function of its C-terminal c-di-guanosine monophosphate phosphodiesterase, the EAL (Glu-Ala-Leu) domain, is activated by the N-terminal sensor of blue light using the flavin adenine dinucleotide (BLUF) domain. We performed molecular dynamics simulations on the dimeric BlrP1 protein in order to examine the coupling regions that are presumably involved in transmitting light-induced structural changes which occur in the BLUF domain to the EAL domain. According to the results of simulations and an analysis of the hydrogen bonding between the respective polypeptide chains, the region containing the site on the α3α4 loop of BLUF is responsible for communication between the photosensing and catalytic domains in the dimeric BlrP1 protein.  相似文献   
937.
938.
Studies on some plant species have shown that increasing the growth temperature gradually or pretreating with high temperature can lead to obvious photosynthetic acclimation to high temperature. To test whether this acclimation arises from heat adaptation of ribulose 1,5‐bisphosphate carboxylase/oxygenase (Rubisco, EC 4.1.1.39) activation mediated by Rubisco activase (RCA), gene expression of RCA large isoform (RCAL) and RCA small isoform (RCAS) in rice was determined using a 4‐day heat stress treatment [40/30°C (day/night)] followed by a 3‐day recovery under control conditions [30/22°C (day/night)]. The heat stress significantly induced the expression of RCAL as determined by both mRNA and protein levels. Correlative analysis indicated that RCAS protein content was extremely significantly related to Rubisco initial activity and net photosynthetic rate (Pn) under both heat stress and normal conditions. Immunoblot analysis of the Rubisco–RCA complex revealed that the ratio of RCAL to Rubisco increased markedly in heat‐acclimated rice leaves. Furthermore, transgenic rice plants expressing enhanced amounts of RCAL exhibited higher thermotolerance in Pn and Rubisco initial activity and grew better at high temperature than wild‐type (WT) plants and transgenic rice plants expressing enhanced amounts of RCAS. Under normal conditions, the transgenic rice plants expressing enhanced amounts of RCAS showed higher Pn and produced more biomass than transgenic rice plants expressing enhanced amounts of RCAL and wild‐type plants. Together, these suggest that the heat‐induced RCAL may play an important role in photosynthetic acclimation to moderate heat stress in vivo, while RCAS plays a major role in maintaining Rubisco initial activity under normal conditions.  相似文献   
939.

Background  

Bacteriocins are very diverse group of antimicrobial peptides produced by a wide range of bacteria and known for their inhibitory activity against various human and animal pathogens. Although many bacteriocins are now well characterized, much information is still missing or is unavailable to potential users. The assembly of such information in one central resource such as a database would therefore be of great benefit to the exploitation of these bioactive molecules in the present context of increasing antibiotic resistance and natural bio-preservation need.  相似文献   
940.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号