首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   240篇
  免费   33篇
  国内免费   1篇
  2022年   2篇
  2021年   2篇
  2019年   3篇
  2018年   2篇
  2015年   14篇
  2014年   11篇
  2013年   11篇
  2012年   25篇
  2011年   13篇
  2010年   6篇
  2009年   7篇
  2008年   11篇
  2007年   14篇
  2006年   15篇
  2005年   11篇
  2004年   13篇
  2003年   9篇
  2002年   9篇
  2001年   9篇
  2000年   8篇
  1999年   4篇
  1998年   5篇
  1996年   4篇
  1995年   3篇
  1992年   2篇
  1991年   6篇
  1990年   2篇
  1989年   3篇
  1988年   2篇
  1987年   3篇
  1985年   5篇
  1984年   5篇
  1982年   2篇
  1981年   3篇
  1980年   2篇
  1979年   3篇
  1978年   2篇
  1977年   2篇
  1972年   1篇
  1970年   2篇
  1969年   1篇
  1968年   1篇
  1966年   3篇
  1965年   1篇
  1963年   1篇
  1961年   3篇
  1960年   1篇
  1944年   1篇
  1937年   1篇
  1924年   1篇
排序方式: 共有274条查询结果,搜索用时 265 毫秒
91.
He X  Blount JW  Ge S  Tang Y  Dixon RA 《Planta》2011,233(4):843-855
Roots of kudzu (Pueraria lobata) are a rich source of isoflavone O- and C-glycosides. Although O-glycosylation of (iso)flavonoids has been well characterized at the molecular level, no plant isoflavonoid C-glycosyltransferase genes have yet been isolated. To address the biosynthesis of kudzu isoflavonoids, we generated 6,365 high-quality expressed sequence tags (ESTs) from a subtraction cDNA library constructed using RNA from roots that differentially accumulate puerarin. The ESTs were clustered into 722 TCs and 3,913 singletons, from which 15 family I glycosyltransferases (UGTs) were identified. Hierarchical clustering analysis of the expression patterns of these UGTs with isoflavone synthase (IFS) in a range of tissues identified UGTs with potential functions in isoflavone glycosylation. The open reading frames of these UGTs were expressed in E. coli for functional analysis, and one was shown to preferentially glycosylate isoflavones at the 7-O-position. In addition, ESTs corresponding to chalcone synthase, chalcone reductase, chalcone isomerase (CHI) and 2-hydroxyisoflavanone dehydratase were identified. Recombinant CHI proteins had high activities with both 6′-deoxy- and 6′-hydroxy chalcones, typical of Type II CHIs. Establishment of this EST database and identification of genes associated with kudzu isoflavone biosynthesis and glycosylation provide a new resource for metabolic engineering of bioactive kudzu isoflavones.  相似文献   
92.
The mechanosensitive channel of large conductance, MscL, serves as a biological emergency release valve protecting bacteria from acute osmotic downshock, and is to date the best characterized mechanosensitive channel. The N-terminal region of the protein has been shown to be critical for function by random, site-directed, and deletion mutagenesis, yet is structurally poorly understood. One model proposes that the extreme N-termini form a cluster of amphipathic helices that serves as a cytoplasmic second gate, separated from the pore-forming transmembrane domain by a "linker". Here, we have utilized cysteine trapping of single-cysteine mutated channels to determine the proximity, within the homopentameric complex, of residues within and just peripheral to this proposed linker. Our results indicate that all residues in this region can form disulfide bridges, and that the percentage of dimers increases when the channel is gated in vivo. Functional studies suggest that oxidation traps one of these mutated channels, N15C, into a gating-transition state that retains the capacity to obtain both fully open and closed states. The data are not easily explained by current models for the smooth transition from closed-to-open states, but predict that an asymmetric movement of one or more of the subunits commonly occurs upon gating.  相似文献   
93.
There is a growing awareness of the importance of soil microorganisms in agricultural management practices. Currently, much less is known about whether different crop cultivar has an effect on the taxonomic structure and diversity, and specific functions of soil bacterial communities. Here, we examined the changes of the diversity and composition and enzyme‐encoding nitrogenase genes in a long‐term field experiment with seven different rhizoma peanut cultivars in southeastern USA, coupling high‐throughput 16S rRNA gene sequencing and the sequence‐based function prediction with Tax4Fun. Of the 32 phyla detected (Proteobacteria class), 13 were dominant: Acidobacteria, Alphaproteobacteria, Actinobacteria, Betaproteobacteria, Bacteroidetes, Verrucomicrobia, Gammaproteobacteria, Deltaproteobacteria, Gemmatimonadetes, Firmicutes, Nitrospirae, Chloroflexi, and Planctomycetes (relative abundance >1%). We found no evidence that the diversity and composition of bacterial communities were significantly different among different cultivars, but the abundance of some dominant bacterial groups that have N‐fixation potentials (at broad or fine taxonomic level) and predicted abundances of some enzyme‐encoding nitrogenase genes showed significant across‐cultivar differences. The nitrogenase genes were notably abundant in Florigraze and Latitude soils while remarkably lower in Arbook and UF_TITO soils when compared with other cultivars, indicating different nitrogen fixation potentials among different cultivars. The findings also suggest that the abundance of certain bacterial taxa and the specific function bacteria perform in ecosystems can have an inherent association. Our study is helpful to understand how microbiological responses and feedback to different plant genotypes through the variation in structure and function of their communities in the rhizosphere.  相似文献   
94.
Oxidative stress was recently demonstrated to affect several fitness‐related traits and is now well recognized to shape animal life‐history evolution. However, very little is known about how much resistance to oxidative stress is determined by genetic and environmental effects and hence about its potential for evolution, especially in wild populations. In addition, our knowledge of phenotypic sexual dimorphism and cross‐sex genetic correlations in resistance to oxidative stress remains extremely limited despite important evolutionary implications. In free‐living great tits (Parus major), we quantified heritability, common environmental effect, sexual dimorphism and cross‐sex genetic correlation in offspring resistance to oxidative stress by performing a split‐nest cross‐fostering experiment where 155 broods were split, and all siblings (n = 791) translocated and raised in two other nests. Resistance to oxidative stress was measured as both oxidative damage to lipids and erythrocyte resistance to a controlled free‐radical attack. Both measurements of oxidative stress showed low additive genetic variances, high common environmental effects and phenotypic sexual dimorphism with males showing a higher resistance to oxidative stress. Cross‐sex genetic correlations were not different from unity, and we found no substantial heritability in resistance to oxidative stress at adult age measured on 39 individuals that recruited the subsequent year. Our study shows that individual ability to resist to oxidative stress is primarily influenced by the common environment and has a low heritability with a consequent low potential for evolution, at least at an early stage of life.  相似文献   
95.
In order to shuttle substrates across the lipid bilayer, membrane proteins undergo a series of conformation changes that are influenced by protein structure, ligands, and the lipid environment. To test the effect of lipid on conformation change of the ABC transporter MolBC, EPR studies were conducted in lipids and detergents of variable composition. In both a detergent and lipid environment, MolBC underwent the same general conformation changes as detected by site-directed EPR spectroscopy. However, differences in activity and the details of the EPR analysis indicate conformational rigidity that is dependent on the lipid environment. From these observations, we conclude that native-like lipid mixtures provide the transporter with greater activity and conformational flexibility as well as technical advantages such as reconstitution efficiency and protein stability.  相似文献   
96.
Collecting duct (CD) adenylyl cyclase VI (AC6) has been implicated in arginine vasopressin (AVP)-stimulated renal water reabsorption. To evaluate the role of CD-derived AC6 in regulating water homeostasis, mice were generated with CD-specific knockout (KO) of AC6 using the Cre/loxP system. CD AC6 KO and controls were studied under normal water intake, chronically water loaded, or water deprived; all of these conditions were repeated in the presence of continuous administration of 1-desamino-8-d-arginine vasopressin (DDAVP). During normal water intake or after water deprivation, urine osmolality (U(osm)) was reduced in CD AC6 KO animals vs. controls. Similarly, U(osm) was decreased in CD AC6 KO mice vs. controls after water deprivation+DDAVP administration. Pair-fed (with controls) CD AC6 KO mice also had lower urine osmolality vs. controls. There were no detectable differences between KO and control animals in fluid intake or urine volume under any conditions. CD AC6 KO mice did not have altered plasma AVP levels vs. controls. AVP-stimulated cAMP accumulation was reduced in acutely isolated inner medullary CD (IMCD) from CD A6 KO vs. controls. Medullary aquaporin-2 (AQP2) protein expression was lower in CD AC6 KO mice vs. controls. There were no differences in urinary urea excretion or IMCD UT-A1 expression; however, IMCD UT-A3 expression was reduced in CD AC6 KO mice vs. controls. In summary, AC6 in the CD regulates renal water excretion, most likely through control of AVP-stimulated cAMP accumulation and AQP2.  相似文献   
97.
98.
The mechanosensitive (MS) ion channel is gated by changes in bilayer deformation. It is functional without the presence of any other proteins and gating of the channel has been successfully achieved using conventional patch clamping techniques where a voltage has been applied together with a pressure over the membrane. Here, we have for the first time analyzed the large conducting (MscL) channel in a supported membrane using only an external electrical field. This was made possible using a newly developed technique utilizing a tethered lipid bilayer membrane (tBLM), which is part of an engineered microelectronic array chip. Single ion channel activity characteristic for MscL was obtained, albeit with lower conductivity. The ion channel was gated using solely a transmembrane potential of 300 mV. Computations demonstrate that this amount of membrane potential induces a membrane tension of 12 dyn/cm, equivalent to that calculated to gate the channel in patch clamp from pressure-induced stretching of the bilayer. These results strengthen the supposition that the MscL ion channel gates in response to stress in the lipid membrane rather than pressure across it. Furthermore, these findings illustrate the possibility of using the MscL as a release valve for engineered membrane devices; one step closer to mimicking the true function of the living cell.  相似文献   
99.
The outcome of malaria infection is determined, in part, by the balance of pro-inflammatory and regulatory immune responses. Failure to develop an effective pro-inflammatory response can lead to unrestricted parasite replication, whilst failure to regulate this response leads to the development of severe immunopathology. IL-10 and TGF-beta are known to be important components of the regulatory response, but the cellular source of these cytokines is still unknown. Here we have examined the role of natural and adaptive regulatory T cells in the control of malaria infection and find that classical CD4+CD25(hi) (and Foxp3+) regulatory T cells do not significantly influence the outcome of infections with the lethal (17XL) strain of Plasmodium yoelii (PyL). In contrast, we find that adaptive IL-10-producing, CD4+ T cells (which are CD25-, Foxp3-, and CD127- and do not produce Th1, Th2, or Th17 associated cytokines) that are generated during both PyL and non-lethal P. yoelii 17X (PyNL) infections are able to down-regulate pro-inflammatory responses and impede parasite clearance. In summary, we have identified a population of induced Foxp3- regulatory (Tr1) T cells, characterised by production of IL-10 and down regulation of IL-7Ralpha, that modulates the inflammatory response to malaria.  相似文献   
100.
The autoantigenic polymyositis/scleroderma (PM/Scl) complex was recently shown to be the human homologue of the yeast exosome, which is an RNA-processing complex. Our aim was to assess whether, in addition to targeting the known autoantigens PM/Scl-100 and PM/Scl-75, autoantibodies also target recently identified components of the PM/Scl complex. The prevalence of autoantibodies directed to six novel human exosome components (hRrp4p, hRrp40p, hRrp41p, hRrp42p, hRrp46p, hCsl4p) was determined in sera from patients with idiopathic inflammatory myopathy (n = 48), scleroderma (n = 11), or the PM/Scl overlap syndrome (n = 10). The sera were analyzed by enzyme-linked immunosorbent assays and western blotting using the affinity-purified recombinant proteins. Our results show that each human exosome component is recognized by autoantibodies. The hRrp4p and hRrp42p components were most frequently targeted. The presence of autoantibodies directed to the novel components of the human exosome was correlated with the presence of the anti-PM/Scl-100 autoantibody in the sera of patients with idiopathic inflammatory myopathy (IIM), as was previously found for the anti-PM/Scl-75 autoantibody. Other clear associations between autoantibody activities were not found. These results further support the conception that the autoimmune response may initially be directed to PM/Scl-100, whereas intermolecular epitope spreading may have caused the autoantibody response directed to the associated components.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号