首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   241篇
  免费   33篇
  国内免费   1篇
  2022年   3篇
  2021年   2篇
  2019年   3篇
  2018年   2篇
  2015年   14篇
  2014年   11篇
  2013年   11篇
  2012年   25篇
  2011年   13篇
  2010年   6篇
  2009年   7篇
  2008年   11篇
  2007年   14篇
  2006年   15篇
  2005年   11篇
  2004年   13篇
  2003年   9篇
  2002年   9篇
  2001年   9篇
  2000年   8篇
  1999年   4篇
  1998年   5篇
  1996年   4篇
  1995年   3篇
  1992年   2篇
  1991年   6篇
  1990年   2篇
  1989年   3篇
  1988年   2篇
  1987年   3篇
  1985年   5篇
  1984年   5篇
  1982年   2篇
  1981年   3篇
  1980年   2篇
  1979年   3篇
  1978年   2篇
  1977年   2篇
  1972年   1篇
  1970年   2篇
  1969年   1篇
  1968年   1篇
  1966年   3篇
  1965年   1篇
  1963年   1篇
  1961年   3篇
  1960年   1篇
  1944年   1篇
  1937年   1篇
  1924年   1篇
排序方式: 共有275条查询结果,搜索用时 31 毫秒
21.
Pharmacological evidence implicates trans-cinnamic acid as a feedback modulator of the expression and enzymatic activity of the first enzyme in the phenylpropanoid pathway, L-phenylalanine ammonia-lyase (PAL). To test this hypothesis independently of methods that utilize potentially non-specific inhibitors, we generated transgenic tobacco lines with altered activity levels of the second enzyme of the pathway, cinnamic acid 4-hydroxylase (C4H), by sense or antisense expression of an alfalfa C4H cDNA. PAL activity and levels of phenylpropanoid compounds were reduced in leaves and stems of plants in which C4H activity had been genetically down-regulated. However, C4H activity was not reduced in plants in which PAL activity had been down-regulated by gene silencing. In crosses between a tobacco line over-expressing PAL from a bean PAL transgene and a C4H antisense line, progeny populations harboring both the bean PAL sense and C4H antisense transgenes had significantly lower extractable PAL activity than progeny populations harboring the PAL transgene alone. Our data provide genetic evidence for a feedback loop at the entry point into the phenylpropanoid pathway that had previously been inferred from potentially artifactual pharmacological experiments.  相似文献   
22.
23.
Bahiagrass (Paspalum notatum Flüggé) is the predominant forage grass in the southeastern US. The commercially important bahiagrass cultivar ‘Argentine’ is preferred for genetic transformation over sexual diploid cytotypes, since it produces uniform seed progeny through apomixis. Pseudogamous apomictic seed production in Argentine bahiagrass may contribute to transgene confinement. It is characterized by embryo development which is independent of fertilization of the egg cell, but requires fertilization with compatible pollen to produce the endosperm. Pollen-mediated gene transfer from transgenic, glufosinate-resistant apomictic bahiagrass as pollen donor at close proximity (0.5–3.5 m) with non-transgenic sexual or apomictic bahiagrass cultivars as pollen receptors was evaluated under field conditions. Hybridization frequency was evaluated by glufosinate herbicide resistance in >23,300 seedlings derived from open-pollinated (OP) pollen receptor plants. Average gene transfer between transgenic apomictic, tetraploid and sexual diploid bahiagrass was 0.03%. Herbicide-resistant hybrids confirmed by immuno-chromatographic detection of the PAT protein displayed a single copy bar gene identical to the pollen parent. Hybrids resulting from diploid pollen receptors were confirmed as triploids or aneu-triploids with significantly reduced vigor and seed set as compared to the parents. Transmission of transgenes to sexual bahiagrass is severely restricted by the ploidy difference between tetraploid apomicts and diploid sexual bahiagrass. Average gene transfer between transgenic apomictic tetraploid and non-transgenic, apomictic tetraploid bahiagrass was 0.17%, confirming a very low frequency of amphimixis in apomictic bahiagrass cultivars. While not providing complete transgene containment, gene transfer between transgenic apomictic and non-transgenic bahiagrass occurs at a much lower frequency than reported for other cross-pollinating or facultative apomictic grasses.  相似文献   
24.
Investigation of the role of regulatory T cells (Treg) in model systems is facilitated by their depletion using anti-CD25 Abs, but there has been considerable debate about the effectiveness of this strategy. In this study, we have compared the depletion and repopulation of CD4+CD25+Foxp3+ Treg in uninfected and malaria-infected mice using 7D4 and/or PC61 anti-CD25 Abs. We find that numbers and percentages of CD25(high) cells, but not Foxp3+ cells, are transiently reduced after 7D4 treatment, whereas treatment with PC61 alone or in combination with 7D4 (7D4 plus PC61) reduces but does not eliminate Foxp3+ cells for up to 2 wk. Importantly, all protocols fail to eliminate significant populations of CD25-Foxp3+ or CD25(low)Foxp3+ cells, which retain potent regulatory capacity. By adoptive transfer we show that repopulation of the spleen by CD25(high)Foxp3+ cells results from the re-expression of CD25 on peripheral populations of CD25-Foxp3+ but not from the conversion of peripheral Foxp3-) cells. CD25(high)Foxp3+ repopulation occurs more rapidly in 7D4-treated mice than in 7D4 plus PC61-treated mice, reflecting ongoing clearance of emergent CD25+Foxp3+ cells by persistent PC61 Ab. However, in 7D4 plus PC61-treated mice undergoing acute malaria infection, repopulation of the spleen by CD25+Foxp3+ cells occurs extremely rapidly, with malaria infection driving proliferation and CD25 expression in peripheral CD4+CD25-Foxp3+ cells and/or conversion of CD4+CD25-Foxp3- cells. Finally, we reveal an essential role for IL-2 for the re-expression of CD25 by Foxp3+ cells after anti-CD25 treatment and observe that TGF-beta is required, in the absence of CD25 and IL-2, to maintain splenic Foxp3+ cell numbers and a normal ratio of Treg:non-Treg cells.  相似文献   
25.

Background  

Hematopoietic development in vertebrate embryos results from the sequential contribution of two pools of precursors independently generated. While intra-embryonic precursors harbour the features of hematopoietic stem cells (HSC), precursors formed earlier in the yolk sac (YS) display limited differentiation and self-renewal potentials. The mechanisms leading to the generation of the precursors in both sites are still largely unknown, as are the molecular basis underlying their different potential. A possible approach to assess the role of candidate genes is to transfer or modulate their expression/activity in both sites. We thus designed and compared transduction protocols to target either native extra-embryonic precursors, or hematopoietic precursors.  相似文献   
26.
The mechanosensitive channel of large conductance (MscL) from E. coli serves as an emergency release valve allowing the cell to survive acute osmotic downshock. It is one of the best studied mechanosensitive channels and serves as a paradigm for how a protein can sense and respond to membrane tension. Two MscL crystal structures of the orthologs M. tuberculosis and S. aureus have been solved showing pentameric and tetrameric structures, respectively. Several studies followed to understand whether the discrepancy in their stoichiometry was a species difference or a consequence of the protein manipulation for crystallization. Two independent studies now agree that the full-length S. aureus MscL is actually a pentamer, not tetramer. While detergents appear to play a role in modifying the oligomeric state of the protein, a cytoplasmic helical bundle has also been implicated. Here, we evaluate the role of the C-terminal region of S. aureus MscL in the oligomerization of the channel in native membranes by using an in vivo disulfide-trapping technique. We find that the oligomeric state of S. aureus MscLs with different C-terminal truncations, including the one used to obtain the tetrameric S. aureus MscL crystal structure, are pentamers in vivo. Thus, the C-terminal domain of the S. aureus protein only plays a critical role in the oligomeric state of the SaMscL protein when it is solubilized in detergent.  相似文献   
27.

Background

Severe malaria remains a major cause of global morbidity and mortality. Despite the use of potent anti-parasitic agents, the mortality rate in severe malaria remains high. Adjunctive therapies that target the underlying pathophysiology of severe malaria may further reduce morbidity and mortality. Endothelial activation plays a central role in the pathogenesis of severe malaria, of which angiopoietin-2 (Ang-2) has recently been shown to function as a key regulator. Nitric oxide (NO) is a major inhibitor of Ang-2 release from endothelium and has been shown to decrease endothelial inflammation and reduce the adhesion of parasitized erythrocytes. Low-flow inhaled nitric oxide (iNO) gas is a US FDA-approved treatment for hypoxic respiratory failure in neonates.

Methods/Design

This prospective, parallel arm, randomized, placebo-controlled, blinded clinical trial compares adjunctive continuous inhaled nitric oxide at 80 ppm to placebo (both arms receiving standard anti-malarial therapy), among Ugandan children aged 1-10 years of age with severe malaria. The primary endpoint is the longitudinal change in Ang-2, an objective and quantitative biomarker of malaria severity, which will be analysed using a mixed-effects linear model. Secondary endpoints include mortality, recovery time, parasite clearance and neurocognitive sequelae.

Discussion

Noteworthy aspects of this trial design include its efficient sample size supported by a computer simulation study to evaluate statistical power, meticulous attention to complex ethical issues in a cross-cultural setting, and innovative strategies for safety monitoring and blinding to treatment allocation in a resource-constrained setting in sub-Saharan Africa.

Trial Registration

ClinicalTrials.gov Identifier: NCT01255215  相似文献   
28.
In leguminous plants such as pea (Pisum sativum), alfalfa (Medicago sativa), barrel medic (Medicago truncatula), and chickpea (Cicer arietinum), 4'-O-methylation of isoflavonoid natural products occurs early in the biosynthesis of defense chemicals known as phytoalexins. However, among these four species, only pea catalyzes 3-O-methylation that converts the pterocarpanoid isoflavonoid 6a-hydroxymaackiain to pisatin. In pea, pisatin is important for chemical resistance to the pathogenic fungus Nectria hematococca. While barrel medic does not biosynthesize 6a-hydroxymaackiain, when cell suspension cultures are fed 6a-hydroxymaackiain, they accumulate pisatin. In vitro, hydroxyisoflavanone 4'-O-methyltransferase (HI4'OMT) from barrel medic exhibits nearly identical steady state kinetic parameters for the 4'-O-methylation of the isoflavonoid intermediate 2,7,4'-trihydroxyisoflavanone and for the 3-O-methylation of the 6a-hydroxymaackiain isoflavonoid-derived pterocarpanoid intermediate found in pea. Protein x-ray crystal structures of HI4'OMT substrate complexes revealed identically bound conformations for the 2S,3R-stereoisomer of 2,7,4'-trihydroxyisoflavanone and the 6aR,11aR-stereoisomer of 6a-hydroxymaackiain. These results suggest how similar conformations intrinsic to seemingly distinct chemical substrates allowed leguminous plants to use homologous enzymes for two different biosynthetic reactions. The three-dimensional similarity of natural small molecules represents one explanation for how plants may rapidly recruit enzymes for new biosynthetic reactions in response to changing physiological and ecological pressures.  相似文献   
29.
30.
Bartlett JL  Li Y  Blount P 《Biophysical journal》2006,91(10):3684-3691
The mechanosensitive channel of large conductance acts as a biological "emergency release valve" that protects bacterial cells from hypoosmotic stress. Although structural and functional studies and molecular dynamic simulations of this channel have led to several models for the structural transitions that occur in the gating process, inconsistencies linger and details are lacking. A previous study, using a method coined as the "in vivo SCAM", identified several residues in the channel pore that were exposed to the aqueous environment in the closed and opening conformations. Briefly, the sulfhydryl reagent MTSET was allowed to react, in the presence or absence of hypoosmotic shock, with cells expressing mechanosensitive channel of large conductance channels that contained cysteine substitutions; channel dysfunction was assessed solely by cell viability. Here we evaluate the MTSET-induced functional modifications to these mechanosensitive channel activities by measuring single channel recordings. The observed changes in residue availability in different states, as well as channel kinetics and sensitivity, have allowed us to elucidate the microenvironment encountered for a number of pore residues, thus testing many aspects of previous models and giving a higher resolution of the pore domain and the structural transitions it undergoes from the closed to open state.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号