首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5087篇
  免费   429篇
  5516篇
  2023年   58篇
  2022年   95篇
  2021年   162篇
  2020年   100篇
  2019年   128篇
  2018年   140篇
  2017年   127篇
  2016年   212篇
  2015年   284篇
  2014年   300篇
  2013年   317篇
  2012年   421篇
  2011年   380篇
  2010年   270篇
  2009年   193篇
  2008年   289篇
  2007年   253篇
  2006年   248篇
  2005年   173篇
  2004年   173篇
  2003年   176篇
  2002年   137篇
  2001年   54篇
  2000年   28篇
  1999年   57篇
  1998年   41篇
  1997年   16篇
  1996年   34篇
  1995年   22篇
  1994年   25篇
  1993年   24篇
  1992年   32篇
  1991年   40篇
  1990年   19篇
  1989年   18篇
  1988年   18篇
  1987年   19篇
  1986年   15篇
  1985年   18篇
  1984年   28篇
  1983年   21篇
  1982年   18篇
  1981年   18篇
  1980年   18篇
  1978年   13篇
  1977年   19篇
  1976年   16篇
  1884年   13篇
  1882年   12篇
  1881年   12篇
排序方式: 共有5516条查询结果,搜索用时 0 毫秒
41.
Oxidatively-induced clustered DNA lesions are considered the signature of any ionizing radiation like the ones human beings are exposed daily from various environmental sources (medical X-rays, radon, etc.). To evaluate the role of BRCA1 deficiencies in the mitigation of radiation-induced toxicity and chromosomal instability we have used two human breast cancer cell lines, the BRCA1 deficient HCC1937 cells and as a control the BRCA1 wild-type MCF-7 cells. As an additional control for the DNA damage repair measurements, the HCC1937 cells with partially reconstituted BRCA1 expression were used. Since clustered DNA damage is considered the signature of ionizing radiation, we have measured the repair of double strand breaks (DSBs), non-DSB bistranded oxidative clustered DNA lesions (OCDLs) as well as single strand breaks (SSBs) in cells exposed to radiotherapy-relevant γ-ray doses. Parallel measurements were performed in the accumulation of chromatid and isochromatid breaks. For the measurement of OCDL repair, we have used a novel adaptation of the denaturing single cell gel electrophoresis (Comet assay) and pulsed field gel electrophoresis with Escherichia coli repair enzymes as DNA damage probes. Independent monitoring of the γ-H2AX foci was also performed while metaphase chromatid lesions were measured as an indicator of chromosomal instability. HCC1937 cells showed a significant accumulation of all types of DNA damage and chromatid breaks compared to MCF-7 while BRCA1 partial expression contributed significantly in the overall repair of OCDLs. These results further support the biological significance of repair resistant clustered DNA damage leading to chromosomal instability. The current results combined with previous findings on the minimized ability of base clusters to induce cell death (mainly induced by DSBs), enhance the potential association of OCDLs with breast cancer development especially in the case of a BRCA1 deficiency leading to the survival of breast cells carrying a high load of unrepaired DNA damage clusters.  相似文献   
42.
In previous publications, we reported the benefits of a high‐aspect rotating‐wall vessel (HARV) over conventional bioreactors for insect‐cell cultivation in terms of reduced medium requirements and enhanced longevity. To more fully understand the effects that HARV cultivation has on longevity, the present study characterizes the mode and kinetics of Spodoptera frugiperda cell death in this quiescent environment relative to a shaker‐flask control. Data from flow cytometry and fluorescence microscopy show a greater accumulation of apoptotic cells in the HARV culture, by a factor of at least 2 at the end of the cultivation period. We present a kinetic model of growth and bimodal cell death. The model is unique for including both apoptosis and necrosis, and further, transition steps within the two pathways. Kinetic constants reveal that total cell death is reduced in the HARV and the accumulation of apoptotic cells in this vessel results from reduced depletion by lysis and secondary necrosis. The ratio of early apoptotic to necrotic cell formation is found independent of cultivation conditions. In the model, apoptosis is only well represented by an integral term, which may indicate its dependence on accumulation of some factor over time; in contrast, necrosis is adequately represented with a first‐order term. Cell‐cycle analysis shows the percent of tetraploid cells gradually decreases during cultivation in both vessels. For example, between 90% and 70% viability, tetraploid cells in the HARV drop from 43 ± 1% to 24 ± 4%. The data suggests the tetraploid phase as the likely origin for apoptosis in our cultures. Possible mechanisms for these changes in bimodal cell death are discussed, including hydrodynamic forces, cell–cell interactions, waste accumulation, and mass transport. These studies may benefit insect‐cell cultivation by increasing our understanding of cell death in culture and providing a means for further enhancing culture longevity. © 1999 John Wiley & Sons, Inc. Biotechnol Bioeng 64: 14–26, 1999.  相似文献   
43.
Chitin is a homopolymer of β-(1,4)-linked N-acetyl-D-glucosamine (GlcNAc) and a major structural component of fungal cell walls. In plants, chitin acts as a microbe-associated molecular pattern (MAMP) that is recognized by lysin motif (LysM)-containing plant cell surface-localized pattern recognition receptors (PRRs) that activate a plethora of downstream immune responses. To deregulate chitin-induced plant immunity and successfully establish infection, many fungal pathogens secrete LysM domain-containing effector proteins during host colonization. The LysM effector Ecp6 from the tomato (Solanum lycopersicum) leaf mold fungus Cladosporium fulvum can outcompete plant PRRs for chitin binding because two of its three LysM domains cooperate to form a composite groove with ultra-high (pM) chitin-binding affinity. However, most functionally characterized LysM effectors contain only two LysMs, including Magnaporthe oryzae MoSlp1, Verticillium dahliae Vd2LysM, and Colletotrichum higginsianum ChElp1 and ChElp2. Here, we performed modeling, structural, and functional analyses to investigate whether such dual-domain LysM effectors can also form ultra-high chitin-binding affinity grooves through intramolecular LysM dimerization. However, our study suggests that intramolecular LysM dimerization does not occur. Rather, our data support the occurrence of intermolecular LysM dimerization for these effectors, associated with a substantially lower chitin binding affinity than monitored for Ecp6. Interestingly, the intermolecular LysM dimerization allows for the formation of polymeric complexes in the presence of chitin. Possibly, such polymers may precipitate at infection sites to eliminate chitin oligomers, and thus suppress the activation of chitin-induced plant immunity.

Fungal LysM effectors composed of two LysM domains bind chitin via intermolecular LysM dimerization, leading to polymers that may precipitate to eliminate chitin from infection sites to prevent the activation of host immune receptors.  相似文献   
44.
Alternative splicing is the mechanism by which different combinations of exons in the pre-mRNA give rise to distinct mature mRNAs. This process is mediated by splicing factors that bind the pre-mRNA and affect the recognition of its splicing signals. Saccharomyces species lack many of the regulatory factors present in metazoans. Accordingly, it is generally assumed that the amount of alternative splicing is limited. However, there is recent compelling evidence that yeast have functional alternative splicing, mainly in response to environmental conditions. We have previously shown that sequence and structure properties of the pre-mRNA could explain the selection of 3' splice sites (ss) in Saccharomyces cerevisiae. In this work, we extend our previous observations to build a computational classifier that explains most of the annotated 3'ss in the CDS and 5' UTR of this organism. Moreover, we show that the same rules can explain the selection of alternative 3'ss. Experimental validation of a number of predicted alternative 3'ss shows that their usage is low compared to annotated 3'ss. The majority of these alternative 3'ss introduce premature termination codons (PTCs), suggesting a role in expression regulation. Furthermore, a genome-wide analysis of the effect of temperature, followed by experimental validation, yields only a small number of changes, indicating that this type of regulation is not widespread. Our results are consistent with the presence of alternative 3'ss selection in yeast mediated by the pre-mRNA structure, which can be responsive to external cues, like temperature, and is possibly related to the control of gene expression.  相似文献   
45.
The development of extraocular orbital structures, in particular the choroid and sclera, is regulated by a complex series of interactions between neuroectoderm, neural crest and mesoderm derivatives, although in many instances the signals that mediate these interactions are not known. In this study we have investigated the function of Indian hedgehog (Ihh) in the developing mammalian eye. We show that Ihh is expressed in a population of non-pigmented cells located in the developing choroid adjacent to the RPE. The analysis of Hh mutant mice demonstrates that the RPE and developing scleral mesenchyme are direct targets of Ihh signaling and that Ihh is required for the normal pigmentation pattern of the RPE and the condensation of mesenchymal cells to form the sclera. Our findings also indicate that Ihh signals indirectly to promote proliferation and photoreceptor specification in the neural retina. This study identifies Ihh as a novel choroid-derived signal that regulates RPE, sclera and neural retina development.  相似文献   
46.
2,4-dichlorophenoxyacetic (2,4-D) applied to excised leaves of Cassia fasciculata modified the dark-induced (scotonasty) and light-induced (photonasty) leaflet movements, showing that this compound acts on rapid turgor variation and the concomitant ion migrations, in particular K+. 2,4-D inhibited the scotonastic closure in a dose-dependent manner from 10–8 M to 10–5 M and promoted the photonastic opening in the same range of concentrations. The compound acted rapidly since a treatment as short as 5 min gave an obvious effect on the motile reaction; however, a lag period of 45–60 min was needed to observe its effect. Although 2,4-D is a weak acid, its greatest physiological efficiency was obtained with pH values close to neutrality. The physiological results are discussed in relation to the chemical properties and the characteristics of transport of the molecule.Abbreviations ABA abscisic acid - 6-BAP 6-benzylaminopurine - 2,4-D 2,4 dichlorophenoxyacetic acid - GA3 gibberellic acid - HEPES N-[2-hydroxyethyl] piperazine-N-[2-ethanesulphonic acid] - IAA indole-3-acetic acid - NAA 1-naphthaleneacetic acid - MES 2-(N-morpholino)-ethanesulphonic acid  相似文献   
47.
Understanding the role of disease in population regulation is important to the conservation of wildlife. We evaluated the prevalence of Toxoplasma gondii exposure and Sarcocystis spp. infection in 46 road-killed and accidentally trapper-killed fisher (Martes pennanti) carcasses collected and stored at -20 C by the Pennsylvania Game Commission from February 2002 to October 2008. Blood samples were assayed for T. gondii antibodies using the modified agglutination test (MAT, 1 : 25) and an indirect immunofluorescent antibody test (IFAT, 1 : 128). For genetic analysis, DNA samples were extracted from thoracic and pelvic limb skeletal muscle from each carcass to test for Sarcocystis spp. using 18s-rRNA PCR primers. Antibodies to T. gondii were found in 100% (38 of 38) of the fishers tested by MAT and in 71% (32 of 45) of the fishers tested by IFAT. PCR analysis revealed that 83% (38 of 46) of the fishers were positive for Sarcocystis spp. Sequence analysis of 7 randomly chosen amplicons revealed the fisher sarcocysts had a 98.3% to 99.1% identity to several avian Sarcocystis spp. sequences in GenBank. Data from our study suggest that a high percentage of fishers in Pennsylvania have been exposed to T. gondii and are infected with Sarcocystis spp.  相似文献   
48.

Aquatic systems have been extensively altered by human structures (e.g., construction of dams/canals) and these have major impacts on the connectivity of wildlife populations through the loss and isolation of suitable habitats. Habitat loss and isolation affect gene flow and influence the persistence of populations in time and space by restricting movements. Isolation can result in higher inbreeding, lower genetic diversity, and greater genetic structure, which may render populations more vulnerable to environmental changes, and thus to extinction. Given the ubiquity and the persistence of dams and canals in space and time, it is crucial to understand their effects on the population genetics of aquatic species. Here, we documented the genetic diversity and structure of painted turtle (Chrysemys picta) populations in the Rideau Canal, Ontario, Canada. More specifically, we used 13 microsatellites to evaluate the influence of locks on genetic variation in 822 painted turtles from 22 sites evenly distributed along the 202-km canal. Overall, we found low, but significant, genetic differentiation suggesting that some dispersal is occurring throughout the canal. In addition, we showed that locks contribute to the genetic differentiation observed in the system. Clustering analysis revealed two distinct genetic groups whose boundary is associated with a series of six locks. Our results illustrate how artificial waterways, such as canal systems, can influence population genetic structure. We highlight the importance of adopting management plans that can mitigate the impacts of human infrastructure and preserve gene flow across the landscape to maintain viable populations.

  相似文献   
49.
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号