首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26篇
  免费   1篇
  2015年   1篇
  2013年   1篇
  2012年   2篇
  2011年   3篇
  2010年   1篇
  2008年   4篇
  2006年   1篇
  2005年   2篇
  2004年   2篇
  2002年   1篇
  1999年   1篇
  1997年   1篇
  1995年   1篇
  1994年   1篇
  1989年   1篇
  1986年   1篇
  1985年   1篇
  1984年   2篇
排序方式: 共有27条查询结果,搜索用时 109 毫秒
11.
The new model plant for temperate grasses, Brachypodium distachyon offers great potential as a tool for functional genomics. We have established a sodium azide-induced mutant collection and a TILLING platform, called “BRACHYTIL”, for the inbred line Bd21-3. The TILLING collection consists of DNA isolated from 5530 different families. Phenotypes were reported and organized in a phenotypic tree that is freely available online. The tilling platform was validated by the isolation of mutants for seven genes belonging to multigene families of the lignin biosynthesis pathway. In particular, a large allelic series for BdCOMT6, a caffeic acid O-methyl transferase was identified. Some mutants show lower lignin content when compared to wild-type plants as well as a typical decrease of syringyl units, a hallmark of COMT-deficient plants. The mutation rate was estimated at one mutation per 396 kb, or an average of 680 mutations per line. The collection was also used to assess the Genetically Effective Cell Number that was shown to be at least equal to 4 cells in Brachypodium distachyon. The mutant population and the TILLING platform should greatly facilitate functional genomics approaches in this model organism.  相似文献   
12.
Transient left ventricular apical ballooning syndrome, also known as Takotsubo cardiomyopathy (TTC) was described for the first time in Japan in the earliest nineties. It represents 1 to 2 % of acute cardiac events and mimics closely acute myocardial infarction. The aim of this study was to investigate 99mTc-tetrofosmine or 201Thallium myocardial Single Photon Emission Computed Tomography (SPECT), 123I-metaIodoBenzylGuanidine (123I-mIBG) myocardial SPECT and myocardial Positron Emission Tomography using 18F-fluorodeoxyglucose (18F-FDG) in patients with TTC, assessing respectively left ventricular perfusion, innervation and metabolism. We studied four patients (three females) with TTC. We performed two weeks after acute phase (subacute phase) myocardial perfusion SPECT and 123I-mIBG myocardial SPECT for each patient. Two of them underwent myocardial PET with FDG. Then, we assessed left ventricular innervation and metabolism three months (chronic phase I) and more than six months (chronic phase II) after the acute phase. We compared the discrepancies between radionuclides uptake in the left ventricular apical region during a follow-up period of more than six months. In subacute phase, perfusion SPECT was normal for each patient. Conversely, 123I-mIBG SPECT and FDG-PET showed concordant apical uptake defect. This perfusion-metabolism pattern called “inverse flow-metabolism mismatch” is the metabolic state of stunned myocardium. After three months, we found improvement of apical tracer uptake in both FDG-PET and 123I-mIBG SPECT. These findings suggest that TTC is characterized by myocardial apical stunning which is related to a disturbance of cardiac sympathetic innervation. 123I-mIBG SPECT might be useful to diagnose earlier this pathology and to rule out acute myocardial infarction.  相似文献   
13.
At the mouse neuromuscular junction (NMJ), there are two distinct cholinesterases (ChE): acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). Until now, it has been difficult to determine the precise localization of BChE at the NMJ. In this study, we use a modification of Koelle''s method to stain AChE and BChE activity. This method does not interfere with fluorescent co-staining, which allows precise co-localization of ChE and other synaptic molecules at the NMJ. We demonstrate that AChE and BChE exhibit different localization patterns at the mouse NMJ. AChE activity is present both in the primary cleft and in the secondary folds, whereas BChE activity appears to be almost absent in the primary cleft and to be concentrated in subsynaptic folds. The same localization for BChE is observed in the AChE-knockout (KO) mouse NMJ. Collagenase treatment removed AChE from the primary cleft, but not from secondary folds in the wild-type mouse, whereas in the AChE-KO mouse, BChE remains in the secondary folds. After peripheral nerve injury and regeneration, BChE localization is not modified in either normal or KO mice. In conclusion, specific localization of BChE in the secondary folds of the NMJ suggests that this enzyme is not a strict surrogate of AChE and that the two enzymes have two different roles. (J Histochem Cytochem 58:1075–1082, 2010)  相似文献   
14.
15.
The strong affinity of chitosan for metal ions and more specifically for precious metals such as palladium and platinum has focused the interest on using this biopolymer as a support for catalytic metals. The manufacturing of hollow chitosan fibers, softly cross-linked with glutaraldehyde, followed by palladium sorption at pH 2 in HCl solutions and further reduction using hydrogen gas, opened the route for the design of a new continuous catalytic system. This material was used for the hydrogenation of nitrotoluene, which was converted into o-toluidine, in methanol solutions. The substrate was circulated inside the lumen of the fiber, while the hydrogen donor (hydrogen gas) was maintained at constant pressure in the outlet compartment of the reactor. Several parameters (substrate concentration, metal content in the fiber, and flow rate) have been tested for their impact on catalytic performance, measured by the turnover frequency (TOF), conversion yield or o-toluidine production, using a surface response methodology for the optimization of the process. Metal content in the fiber revealed a critical parameter; the influence of this parameter was extensively studied through the structural characterization of the fibers using XPS analysis (oxidation state of Pd), X-ray diffraction analysis (size of Pd crystals), TEM analysis (size and distribution of Pd crystals), and diffusion profiles (porosity) in order to correlate catalytic performance to fiber characterization.  相似文献   
16.
BACKGROUND: The p16INK4A gene product halts cell proliferation by preventing phosphorylation of the Rb protein. The p16INK4a gene is often deleted in human glioblastoma multiforme, contributing to unchecked Rb phosphorylation and rapid cell division. We show here that transduction of the human p16INK4a cDNA using the pCL retroviral system is an efficient means of stopping the proliferation of the rat-derrived glioma cell line, C6, both in tissue culture and in an animal model. C6 cells were transduced with pCL retrovirus encoding the p16INK4a, p53, or Rb genes. These cells were analyzed by a colony formation assay. Expression of p16INK4a was confirmed by immunohistochemistry and Western blot analysis. The altered morphology of the p16-expressing cells was further characterized by the senescence-associated beta-galactosidase assay. C6 cells infected ex vivo were implanted by stereotaxic injection in order to assess tumor formation. RESULTS: The p16INK4a gene arrested C6 cells more efficiently than either p53 or Rb. Continued studies with the p16INK4a gene revealed that a large portion of infected cells expressed the p16INK4a protein and the morphology of these cells was altered. The enlarged, flat, and bi-polar shape indicated a senescence-like state, confirmed by the senescence-associated beta-galactosidase assay. The animal model revealed that cells infected with the pCLp16 virus did not form tumors. CONCLUSION: Our results show that retrovirus mediated transfer of p16INK4a halts glioma formation in a rat model. These results corroborate the idea that retrovirus-mediated transfer of the p16INK4a gene may be an effective means to arrest human glioma and glioblastoma.  相似文献   
17.
CC Kuo  FP Chen 《Biophysical journal》1999,77(5):2552-2562
Modulation of voltage-dependent transient K(+) currents (A type K(+) or K(A) current) by Zn(2+) was studied in rat hippocampal neurons by the whole-cell patch-clamp technique. It is found that Zn(2+) selectively binds to the resting (deactivated or closed) K(A) channels with a dissociation constant (K(d)) of approximately 3 &mgr;M, whereas the affinity between Zn(2+) and the inactivated K(A) channels is 1000-fold lower. Zn(2+) therefore produces a concentration-dependent shift of the K(A) channel inactivation curve and enhances the K(A) current elicited from relatively positive holding potentials. It is also found that the kinetics of Zn(2+) action are fast enough to compete with the transition rates between different gating states of the channel. The rapid and selective binding of Zn(2+) to the closed K(A) channels keeps the channel in the closed state and explains the ion's concentration-dependent slowing effect on the activation of K(A) current. This in turn accounts for the inhibitory effect of Zn(2+) on the K(A) current elicited from hyperpolarized holding potentials. Because the molecular mechanisms underlying these gating changes are kinetic interactions between the binding-unbinding of Zn(2+) and the intrinsic gating processes of the channel, the shift of the inactivation curve and slowing of K(A) channel activation are quantitatively correlated with ambient Zn(2+) over a wide concentration range without "saturation"; i.e., The effects are already manifest in micromolar Zn(2+), yet are not saturated even in millimolar Zn(2+). Because the physiological concentration of Zn(2+) could vary over a similarly wide range according to neural activities, Zn(2+) may be a faithful physiological "fine tuner," controlling and controlled by neural activities through its effect on the K(A) current.  相似文献   
18.
Experimental denervation of adult mouse sternocleidomastoid muscle results in a decrease in total AChE. The most rapid change essentially affects the tailed, asymmetric 16 S AChE, since one day after nerve section, “16S” AChE is already significantly decreased to about 70% of its control value. We found that both background and junctional “16S” AChE are affected by this rapid decrease. Later, a sharp fall in “10S” and “4S” AChE occurs about seven days after denervation when muscle atrophy develops with loss of weight and proteins. A gaussian analysis of the sedimentation profiles of AChE extracted from denervated muscle shows that there is not only an early rapid decrease in 16 S AChE but also a decrease in the monomeric 3.3S AChE. This result suggests that there is a very rapid turn-over of two molecular forms of AChE, the supposedly monomeric precursor and the complex asymmetric 16S AChE.  相似文献   
19.
Nerve and muscle development was studied in paralysé mutant mice. The mutant phenotype is first recognizable 6-7 days after birth (PN 6-PN 7) as cessation of muscle growth and weakness and incoordination of movement. Mutant animals die between 2 and 3 weeks of age. Muscle fibers from paralysé mutants had a unimodal distribution of diameters and normal numbers and distributions of acetylcholine receptors. The only structural abnormality seen was a reduced extracellular space within muscle fascicles. Total muscle choline acetyltransferase activity was reduced compared with that of control muscles, indicating that synaptic terminal development was impaired. Light and electron microscopy showed that polyneuronal innervation was retained in mutant endplates, and the normal process of withdrawal of redundant innervation did not occur. The paralysé muscles reacted to experimental denervation with an increase in extrajunctional acetylcholine receptor numbers. Intramuscular axons failed to become myelinated in mutant animals, although sciatic nerve axons were myelinated with a normal myelin thickness/axon diameter ratio. Nodes of Ranvier were elongated and myelin lamellae in the paranodal regions were poorly fused. Sciatic nerves in mutant animals retained the neonatal unimodal distribution of axon diameters, whereas in control animals it became bimodal by 2 weeks of age. Our results are not consistent with a previous suggestion that paralysé mutant muscle endplates are progressively denervated. We conclude that the major expression of the paralysé mutant phenotype is an arrest in development of both nerve and muscle during the first week after birth. The paralysé mutant gene most likely is involved in the general support of development of many or all body tissues from 1 week of age. We found no regression of any aspect of differentiation, once achieved.  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号