首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   74篇
  免费   9篇
  2021年   1篇
  2017年   3篇
  2016年   3篇
  2015年   4篇
  2014年   4篇
  2013年   5篇
  2012年   1篇
  2011年   2篇
  2010年   1篇
  2009年   8篇
  2008年   3篇
  2007年   4篇
  2006年   3篇
  2005年   5篇
  2003年   1篇
  2002年   2篇
  2001年   4篇
  2000年   4篇
  1999年   2篇
  1998年   2篇
  1997年   2篇
  1996年   2篇
  1995年   3篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1990年   1篇
  1982年   2篇
  1977年   2篇
  1968年   1篇
  1967年   1篇
  1966年   3篇
  1965年   1篇
排序方式: 共有83条查询结果,搜索用时 78 毫秒
31.
32.
Summary Insulinlike growth factors (IGF) and epidermal growth factor (EGF) are produced in renal tissue, as are specific receptors for these hormones. To evaluate the significance of these observations to regulation of renal tubular cell proliferation, we have examined the interaction of IGF and EGF with cultured human proximal tubular epithelial cells (HPT). HPT cells showed specific binding of IGF-1, insulin, and EGF. IGF-1 binding was inhibited by antibody to the type 1 IGF receptor (α-IR3). Insulin receptors and type 1 IGF receptors were identified by bifunctional cross-linking. IGF-1, insulin, and EGF stimulated [3H]thymidine incorporation by 77, 73, and 87%, respectively. Haft maximal stimulation by IGF-1, insulin, and EGF was produced with 4×10−9 M, 2.5×10−8 M, and 8×10−10 M concentrations of these hormones. α-IR3 inhibited stimulation of thymidine incorporation by IGF-1 and insulin but had no effect in EGF-stimulated thymidine incorporation. EGF and high concentrations of insulin both stimulated cell proliferation by 83 and 79%, respectively. These data are consistent with regulation of tubular epithelial proliferation by IGF-1, insulin, and EGF and suggest that the mitogenic activity of both insulin and IGF-1 is mediated by the type 1 IGF receptor. Supported by grants CA37887 and DK32889 from the National Institutes of Health, Bethesda, MD, and by a Medical University of South Carolina institutional grant.  相似文献   
33.
Chemoattractants added to cells of the cellular slime mold dictyostelium discoideum induce a transient elevation of cyclic GMP levels, with a maximum at 10 s and a recovery of basal levels at approximately 25 s after stimulation. We analyzed the kinetics of an intracellular cGMP binding protein in vitro and in vivo. The cyclic GMP binding protein in vitro at 0 degrees C can be described by its kinetic constants K(1)=2.5 x 10(6) M(- 1)s(-1), k(-1)=3.5 x 10(-3)s(-1), K(d)=1.4 x 10(-9) M, and 3,000 binding sites/cell. In computer simulation experiments the occupancy of the cGMP binding protein was calculated under nonequilibrium conditions by making use of the kinetic constants of the binding protein and of the shape of the cGMP accumulations. These experiments show that under nonequilibrium conditions by making use of the kinetic constants of the binding protein and the shape of the cGMP accumulations. These experiments show that under nonequilibrium conditions the affinity of the binding protein for cGMP is determined by the rate constant of association (k(1)) and not by the dissociation constant (k(d)). Experiments in vivo were performed by stimulation of aggregative cells with the chemoattractant cAMP, which results in a transient cGMP accumulation. At different times after stimulation with various cAMP concentrations, the cells were homogenized and immediately thereafter the number of binding proteins which were not occupied with native cGMP were determined. The results of these experiments in vivo are in good agreement with the results of the computer experiments. This may indicate that: (a) The cGMP binding protein in vivo at 22 degrees C can be described by its kinetic constants: K(1)=4x10(6)M(-1)s(-1) and K(-1)=6x10(-3)s(-1). (b) Binding the cGMP to its binding protein is transient with a maximum at about 20-30 s after chemotactic stimulation, followed by a decay to basal levels, with a half-life of approximately 2 min. (c) The cGMP to its binding proteins get half maximally occupied at a cGMP accumulation of δ[cGMP](10)=2x10(-8) M, which corresponds to an extracellular stimulation of aggregative cells by 10(-10) M cAMP. (d) Since the mean basal cGMP concentration is approximately 2x10(-7) M, the small increase of cGMP cannot be detected accurately. Therefore the absence of a measurable cGMP accumulation does not argue against a cGMP function. (e) There may exist two compartments of cGMP: one contains almost all the cGMP of unstimulated cells, and the other contains cGMP binding proteins and the cGMP which accumulates after chemotactic stimulation. (f) From the kinetics of binding, the cellular responses to the chemoattractant can be divided into two classes: responses which can be mediated by this binding protein (such as light scattering, proton extrusion, PDE induction, and chemotaxis) and responses which cannot be (solely) mediated by this binding protein such as rlay, refractoriness, phospholipids methylation, and protein methylation.  相似文献   
34.
The control of ionized calcium in squid axons   总被引:9,自引:6,他引:3       下载免费PDF全文
Measurements of the Ca content, [Ca](T), of freshly isolated squid axons show a value of 60 μmol/kg axoplasm. Axons in 3 mM Ca(Na) seawater show little change in Ca content over 4 h, while axons in 3 mM Ca(Na) seawater show little change in Ca content over 4 h, while axons in 10 mM Ca(Na) seawater show gains of 18 μmol/Ca/kgxh. In 10 Ca (Choline) seawater the gain is 2,400 μmol/kgxh. Using aequorin confined to a dialysis capillary in the center of an axon, one finds that [Ca](i) is in a steady state with 3 Ca (Na) seawater, and that both 10 Ca (Na) and 3 Ca (choline) seawater cause increases in [Ca](i). In 3 Ca (Na) seawater-3 Ca (choline) seawater mixtures, 180 mM [Na](0) (40 perecent Na) is as effective as 450 mM [Na](0) (100 percent Na) in maintaining a normal [Ca](1); lower [Na] causes an increase in [Ca](i). If axons are injected with the ATP-splitting enzyme apyrase, the resulting [Ca](1) is not loading with high [Ca](0) or low [Na](0) solutions. Depolarization of an axon with 100 mM K (Na) seawater leads to an increase in the steady-state level of [Ca](1) that is reversed upon returning the axon to normal seawater. Freshly isolated axons treated with either CN or FCCP to inhibit mitochondrial Ca buffering can still maintain a normal [Ca](i) in 1 Ca (Na) seawater.  相似文献   
35.

Background

Tumour necrosis factor (TNF) is crucial for the control of mycobacterial infection as TNF deficient (KO) die rapidly of uncontrolled infection with necrotic pneumonia. Here we investigated the role of membrane TNF for host resistance in knock-in mice with a non-cleavable and regulated allele (mem-TNF).

Methods

C57BL/6, TNF KO and mem-TNF mice were infected with M. tuberculosis H37Rv (Mtb at 100 CFU by intranasal administration) and the survival, bacterial load, lung pathology and immunological parameters were investigated. Bone marrow and lymphocytes transfers were used to test the role of membrane TNF to confer resistance to TNF KO mice.

Results

While TNF-KO mice succumbed to infection within 4–5 weeks, mem-TNF mice recruited normally T cells and macrophages, developed mature granuloma in the lung and controlled acute Mtb infection. However, during the chronic phase of infection mem-TNF mice succumbed to disseminated infection with necrotic pneumonia at about 150 days. Reconstitution of irradiated TNF-KO mice with mem-TNF derived bone marrow cells, but not with lymphocytes, conferred host resistance to Mtb infection in TNF-KO mice.

Conclusion

Membrane expressed TNF is sufficient to allow cell-cell signalling and control of acute Mtb infection. Bone marrow cells, but not lymphocytes from mem-TNF mice confer resistance to infection in TNF-KO mice. Long-term infection control with chronic inflammation likely disrupting TNF mediated cell-cell signalling, additionally requires soluble TNF.  相似文献   
36.
Gram-negative bacteria commonly interact with eukaryotic host cells by using type III secretion systems (TTSSs or secretons). TTSSs serve to transfer bacterial proteins into host cells. Two translocators, IpaB and IpaC, are first inserted with the aid of IpaD by Shigella into the host cell membrane. Then at least two supplementary effectors of cell invasion, IpaA and IpgD, are transferred into the host cytoplasm. How TTSSs are induced to secrete is unknown, but their activation appears to require direct contact of the external distal tip of the apparatus with the host cell. The extracellular domain of the TTSS is a hollow needle protruding 60 nm beyond the bacterial surface. The monomeric unit of the Shigella flexneri needle, MxiH, forms a superhelical assembly. To probe the role of the needle in the activation of the TTSS for secretion, we examined the structure-function relationship of MxiH by mutagenesis. Most point mutations led to normal needle assembly, but some led to polymerization or possible length control defects. In other mutants, secretion was constitutively turned "on." In a further set, it was "constitutively on" but experimentally "uninducible." Finally, upon induction of secretion, some mutants released only the translocators and not the effectors. Most types of mutants were defective in interactions with host cells. Together, these data indicate that the needle directly controls the activity of the TTSS and suggest that it may be used to "sense" host cells.  相似文献   
37.
Diel movements of Orange–Vaal smallmouth yellowfish Labeobarbus aeneus (Burchell, 1822) in the Vaal River, South Africa, were determined by externally attaching radio transmitters to 11 adult fish and manually tracking them between March and May 2012. Twenty-four radio telemetry monitoring surveys produced 2 304 diel tracks. At night, yellowfish displayed a preference for slow shallow (<0.3?m s?1, <0.5?m) and fast shallow habitats (>0.3?m s?1, <0.3?m), whereas by day they avoided these habitats, preferring fast deep areas (>0.3?m s?1, >0.3?m). The average total distance of 272?m moved per 24-hour period was three times greater than the diel range, and the average maximum displacement per minute was significantly higher in daytime (4?m) than at night (1.5?m). These findings suggest that L. aeneus is active primarily during the day in fast-flowing, deeper waters, and relatively inactive at night, when it occupies shallower habitats. This behaviour should be further explored to identify causal mechanisms underlying the diel habitat shifts in this species such as water temperature, foraging tactics and/or predator avoidance.  相似文献   
38.
Animals often engage in mutualistic associations with microorganisms that protect them from predation, parasitism or pathogen infection. Studies of these interactions in insects have mostly focussed on the direct effects of symbiont infection on natural enemies without studying community‐wide effects. Here, we explore the effect of a defensive symbiont on population dynamics and species extinctions in an experimental community composed of three aphid species and their associated specialist parasitoids. We found that introducing a bacterial symbiont with a protective (but not a non‐protective) phenotype into one aphid species led to it being able to escape from its natural enemy and increase in density. This changed the relative density of the three aphid species which resulted in the extinction of the two other parasitoid species. Our results show that defensive symbionts can cause extinction cascades in experimental communities and so may play a significant role in the stability of consumer‐herbivore communities in the field.  相似文献   
39.
Type III secretion systems (T3SSs) are essential virulence devices for many gram-negative bacteria that are pathogenic for plants, animals, and humans. They serve to translocate virulence effector proteins directly into eukaryotic host cells. T3SSs are composed of a large cytoplasmic bulb and a transmembrane region into which a needle is embedded, protruding above the bacterial surface. The emerging antibiotic resistance of bacterial pathogens urges the development of novel strategies to fight bacterial infections. Therapeutics that rather than kill bacteria only attenuate their virulence may reduce the frequency or progress of resistance emergence. Recently, a group of salicylidene acylhydrazides were identified as inhibitors of T3SSs in Yersinia, Chlamydia, and Salmonella species. Here we show that these are also effective on the T3SS of Shigella flexneri, where they block all related forms of protein secretion so far known, as well as the epithelial cell invasion and induction of macrophage apoptosis usually demonstrated by this bacterium. Furthermore, we show the first evidence for the detrimental effect of these compounds on T3SS needle assembly, as demonstrated by increased numbers of T3S apparatuses without needles or with shorter needles. Therefore, the compounds generate a phenocopy of T3SS export apparatus mutants but with incomplete penetrance. We discuss why this would be sufficient to almost completely block the later secretion of effector proteins and how this begins to narrow the search for the molecular target of these compounds.  相似文献   
40.
In this paper we attempted to investigate the existence of daily fluctuations on plasma sexual steroids (17beta-estradiol, E(2) and testosterone, T) in Senegal sole (Solea senegalensis) females. We described the monthly day/night concentrations and seasonal daily rhythms in animals reared under natural photo- and thermo-period. In addition, the influence of the natural annual fluctuation of the water temperature on the plasma concentration of these steroids was investigated, using one group of Senegal sole under a natural photoperiod, but with an attenuated thermal cycle (around 17-20 degrees C) for one year. Although no significant day/night differences were detected in monthly samplings, the existence of an annual rhythm of E(2) and T (p<0.01) with an acrophase in February was revealed by COSINOR analysis. Maximum values were reached in March for both steroids (6.1+/-1.7 ng mL(-1) at mid-dark, MD and 4.0+/-0.6 ng mL(-1) at mid-light, ML for E2 and 1.4+/-0.4 ng mL(-1) at MD and 0.8+/-0.1 ng mL(-1) at ML for T) in anticipation of the spawning season (May-June). As regards seasonal daily rhythms, the presence of daily oscillations was revealed. At the spring solstice (21st March) a daily rhythm was observed for both steroids (COSINOR, p<0.01), with an acrophase at 20:00 h (E(2)) and at 21:08 h (T). In summer, autumn and winter no daily rhythms were observed due to the low steroid levels at those seasons. When Senegal sole females were submitted to an attenuated annual thermal cycle, the steroid rhythm disappeared (there was no surge in spring, as in the control group) and these fish did not spawn, despite being subjected to natural photoperiod conditions. This result underlined the importance of the natural annual fluctuation of water temperature and photoperiod on the synchronization of the spawning season and on the onset of steroidogenesis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号