首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19篇
  免费   0篇
  2018年   1篇
  2014年   1篇
  2009年   1篇
  2007年   1篇
  2004年   1篇
  2002年   3篇
  2001年   2篇
  1999年   1篇
  1998年   3篇
  1997年   2篇
  1993年   3篇
排序方式: 共有19条查询结果,搜索用时 171 毫秒
11.
The extreme polygyny expressed by male lekking birds leads to the expectation that sexual dimorphism should be greater in lekkers than related non-lekkers. However, evidence for this association is weak, and many lekkers are actually monomorphic in size and plumage. To better understand the kinds of plumages associated with lekking, I characterized plumage variation for combinations of sexual dichromatism and colourfulness-and-conspicuousness (COCO) among lekking and related non-lekking birds. Compared in this way, the plumages of lekkers and non-lekkers differ dramatically for both sexes. Correlations between sexual dichromatism and COCO for phylogenetically independent contrasts are significant for male lekkers (positive) and female non-lekkers (negative), but not for female lekkers or male non-lekkers. Moreover, the total number of character–state combinations, and multivariate measures of variability, are greater in non-lekkers than lekkers.The characteristic plumages of lekkers (duller monochromatic, brighter dichromatic and intermediate between these extremes) comprise just a subset of those observed among non-lekkers, and exclude extremely dull dichromatic and extremely bright monochromatic plumages. I suggest that predation, and foraging behaviours compatible with lekking, may restrict plumage variation among lekkers. Thus ecological rather than overt sexual characteristics may explain monomorphism in birds under intense mate competition, as well as the paradox of strong female mate preferences on leks, where males appear to contribute only sperm to female reproductive efforts.  相似文献   
12.
The spectacular evolutionary radiation of hummingbirds (Trochilidae) has served as a model system for many biological studies. To begin to provide a historical context for these investigations, we generated a complete matrix of DNA hybridization distances among 26 hummingbirds and an outgroup swift (Chaetura pelagica) to determine the principal hummingbird lineages. FITCH topologies estimated from symmetrized delta TmH-C values and subjected to various validation methods (bootstrapping, weighted jackknifing, branch length significance) indicated a fundamental split between hermit (Eutoxeres aquila, Threnetes ruckeri; Phaethornithinae) and nonhermit (Trochilinae) hummingbirds, and provided strong support for six principal nonhermit clades with the following branching order: (1) a predominantly lowland group comprising caribs (Eulampis holosericeus) and relatives (Androdon aequatorialis and Heliothryx barroti) with violet-ears (Colibri coruscans) and relatives (Doryfera ludovicae); (2) an Andean-associated clade of highly polytypic taxa (Eriocnemis, Heliodoxa, and Coeligena); (3) a second endemic Andean clade (Oreotrochilus chimborazo, Aglaiocercus coelestis, and Lesbia victoriae) paired with thorntails (Popelairia conversii); (4) emeralds and relatives (Chlorostilbon mellisugus, Amazilia tzacatl, Thalurania colombica, Orthorhyncus cristatus and Campylopterus villaviscensio); (5) mountain-gems (Lampornis clemenciae and Eugenes fulgens); and (6) tiny bee-like forms (Archilochus colubris, Myrtis fanny, Acestrura mulsant, and Philodice mitchellii). Corresponding analyses on a matrix of unsymmetrized delta values gave similar support for these relationships except that the branching order of the two Andean clades (2, 3 above) was unresolved. In general, subsidiary relationships were consistent and well supported by both matrices, sometimes revealing surprising associations between forms that differ dramatically in plumage and bill morphology. Our results also reveal some basic aspects of hummingbird ecologic and morphologic evolution. For example, most of the diverse endemic Andean assemblage apparently comprises two genetically divergent clades, whereas the majority of North American hummingbirds belong a single third clade. Genetic distances separating some morphologically distinct genera (Oreotrochilus, Aglaiocercus, Lesbia; Myrtis, Acestrura, Philodice) were no greater than among congeneric (Coeligena) species, indicating that, in hummingbirds, morphological divergence does not necessarily reflect level of genetic divergence.   相似文献   
13.
Studies of visual receptors typically assume that only functionally similar structures are relevant to the evolution of complex eyes. This approach ignores growing evidence that different functional classes of organs often share structural and developmental patterns that pertain to biological sameness (deep homology). However, the potential relevance of non-receptor structures to eye evolution remains largely unexplored. An “ocular” feather color mechanism is described whose structural and optical features resemble those of chambered, image-forming eyes to a remarkable degree. These similarities include a laterally expanded, domed light receiving surface similar to that of an eye, an encapsulated spongy tissue mass whose coherent light scattering properties in the human-visible (destructive) and ultraviolet (constructive) wavelength ranges resemble those of cornea and lens, intervening spaces such as those with humors, and a laminar pigmented shelf whose structure and optics resemble a mirrored tapetum lucidum found behind many retinas. Fourier analysis and optical principles indicate that ocular structures adhere to the same light-handling properties regardless of higher function (receptor or signal). The extent to which chambered eyes and ocular feathers have evolved independently is surprisingly equivocal. On the one hand, broad differences in the location, composition, and development of chambered eyes and ocular feather signals suggest convergent evolution on an ocular organization. However, some level of evolutionary parallelism (generative homology) between chambered eyes and ocular feathers is implicated by similarities in constructional materials, tissue development, and signal transduction cascades. Structural, optical, and developmental similarities also occur between more primitive eyes and the colored dermal papillae responsible for avian skin ornamentation. Functional constraints on light-handling requirements, coupled with developmental constraints in high-stress environments on the body surface, may enhance the similar evolutionary outcomes in the different functional setting. Regardless of the mechanistic details, repeated evolution of eye-like structures in different functional settings reveals a biological potential to produce such organs that is much greater than would be inferred from a survey of receptor structures alone.  相似文献   
14.
Ecological studies suggest that hummingbird-pollinated plants in North America mimic each other to increase visitation by birds. Published quantitative trait locus (QTL) data for two Mimulus species indicate that floral traits associated with hummingbird versus bee pollination results from a few loci with major effects on morphology, as predicted by classical models for the evolution of mimicry. Thus, the architecture of genetic divergence associated with speciation may depend on the ecological context.  相似文献   
15.
OBJECTIVE: To examine the cytologic features of infiltrating micropapillary carcinoma (IMPC). METHODS: Using the histopathology files of one of the authors (I.J.B.), we retrospectively identified 20 IMPC cases (pure, 12; partial micropapillary carcinoma differentiation, 8) with corresponding cytology. We evaluated the cases for cellularity, atypia, architecture and background. RESULTS: All cases were diagnostic of malignancy, characterized by atypical cells present predominantly in three-dimensional clusters and single cells, facilitating the diagnosis. The clusters had cell ball and papillarylike arrangements, like the morular growth pattern seen on histopathology. Apocrine cytology was present in 12 cases, focal mucin background in 5 and psamomma bodies in 2. The differential diagnosis includes primary papillary neoplasms of the breast, metastatic ovarian papillary serous carcinoma, apocrine and colloid carcinoma of the breast, and intraductal carcinoma (micropapillary type). CONCLUSION: As in histopathology, the cytologic features of IMPC are unique and should be recognized due to its aggressive behavior.  相似文献   
16.
Based on breast cancer families with multiple and/or early-onset cases, estimates of the lifetime risk of breast cancer in carriers of BRCA1 or BRCA2 mutations may be as high as 85%. The risk for individuals not selected for family history or other risk factors is uncertain. We determined the frequency of the common BRCA1 (185delAG and 5382insC) and BRCA2 (6174delT) mutations in a series of 268 anonymous Ashkenazi Jewish women with breast cancer, regardless of family history or age at onset. DNA was analyzed for the three mutations by allele-specific oligonucleotide hybridization. Eight patients (3.0%, 95% confidence interval [CI] 1.5%-5.8%) were heterozygous for the 185delAG mutation, two (0.75%, 95% CI 0.20-2.7) for the 5382insC mutation, and eight (3.0%, 95% CI 1.5-5.8) for the 6174delT mutation. The lifetime risk for breast cancer in Ashkenazi Jewish carriers of the BRCA1 185delAG or BRCA2 6174delT mutations was calculated to be 36%, approximately three times the overall risk for the general population (relative risk 2.9, 95% CI 1.5-5.8). For the 5382insC mutation, because of the low number of carriers found, further studies are necessary. The results differ markedly from previous estimates based on high-risk breast cancer families and are consistent with lower estimates derived from a recent population-based study in the Baltimore area. Thus, presymptomatic screening and counseling for these common mutations in Ashkenazi Jewish women not selected for family history of breast cancer should be reconsidered until the risk associated with these mutations is firmly established, especially since early diagnostic and preventive-treatment modalities are limited.  相似文献   
17.
Previous attempts to establish a link between carotenoid-based plumage reflectance and diet have focused on spectral features within the human visible range (400-700 nm), particularly on the longer wavelengths (550-700 nm) that make these plumages appear yellow, orange or red. However, carotenoid reflectance spectra are intrinsically bimodal, with a less prominent but highly variable secondary reflectance peak at near-ultraviolet (UV; 320-400 nm) wavelengths visible to most birds but not to normal humans. Analysis of physical reflectance spectra of carotenoid-bearing plumages among trophically diverse tanagers (Thraupini, Emberizinae, Passeriformes) indicated that both the absolute and relative (to long visible wavelengths) amounts of short waveband (including UV) reflectance were lower in more frugivorous species. Striking modifications to the branched structure of feathers increased with frugivory. These associations were independent of phylogenetic relatedness, or other physical (specimen age, number of carotenoid-bearing patches) or ecological (body size, elevation) variables. By comparison, reflectance at longer visible wavelengths ('redness') was not consistently associated with diet. The reflectance patterns that distinguished frugivores should be more apparent to UV-sensitive birds than to UV-blind humans, but humans can perceive the higher plumage gloss produced by modified gross feather structure. Basic aspects of carotenoid chemistry suggest that increases in pigment concentration and feather dimensions reduce short waveband reflectance by the plumages of frugivores.  相似文献   
18.
I present evidence for asymmetry in the expression of transsexual traits in adult hummingbirds. Among females, individuals with male-like plumage are common and define a continuous range of variation. Among males, individuals with female-like plumage are rare and define discontinuous plumage morphs. Quantitative characters also distinguish transsexuals from other members of their sex, but the characters involved differ for male-like females (bill length) and female-like males (bill, wing and tail length). Gonadal development is correlated with transsexuality only in males; female-like males have significantly smaller testes than male-like males. Both sexes demonstrate a significant negative association between plumage brightness and bill length. This association suggests an ecological basis for transsexuality because differences in plumage and bill morphology are associated with differences in foraging behaviour within and between hummingbird species. Morphological differences between transsexuals and non-transsexuals imply that plumage sexual dimorphism is more likely to evolve through changes in the frequency of female, rather than male, transsexual variants.  相似文献   
19.
Evidence that similar color patterns occur in unrelated animals with different habits undermines the traditional view that homoplasy evolves through shared ecological selection pressures. Carotenoid pigments responsible for many yellow to red signals exhibit two related properties that could link ecology with appearance by nontraditional means. Ecologic homoplasy could arise through ecophenotypy because all animals must obtain carotenoids through their diet. Such homoplasy also could be hidden from view because increased carotenoid levels are more strongly encoded by decreased reflectance over ultraviolet (UV) wavelengths invisible to humans. To explore these possibilities, I examined apparent matches or mismatches between color and ecology among insectivorous (low carotenoid diet) and frugivorous (high carotenoid diet) bird species in relation to the typical yellow and black plumage pattern of insectivorous, UV-sensitive titmice (Paridae). Diagnostic features of reflectance spectra indicated that all yellow plumages resulted from carotenoids, black plumages from melanins, and olive green plumages from codeposition of both pigments. However, reflectance by carotenoid-bearing plumages correlated with diet independent of plumage pattern; compared to the insectivores, frugivores had reduced amounts of UV reflectance, and to a lesser extent, "red shifts" in longer-wavelength reflectance. Furthermore, an asymptotic decrease in amount of UV with increased redness implied that plumage reflectance of insectivorous species differed more over UV wavelengths, whereas that of frugivorous species differed more over longer wavelengths. I verified that dietary links to plumage reflectance resulted from greater amounts of plumage carotenoids in frugivores, presumably due to their carotenoid-rich diets. All of these ecological associations transcended post-mortem or post-breeding color change, and phylogeny. Thus, predictable associations between avian-visible plumage reflectance, pigmentation, and diet across evolutionary scales may arise directly (diet per se) or indirectly (honest signaling of diet) by ecophenotypy, although various genetic factors also may play a role.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号