首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   202篇
  免费   10篇
  2016年   3篇
  2014年   3篇
  2013年   6篇
  2012年   4篇
  2011年   6篇
  2007年   6篇
  2006年   2篇
  2005年   6篇
  2004年   3篇
  2003年   3篇
  2002年   3篇
  1996年   2篇
  1994年   2篇
  1993年   2篇
  1992年   2篇
  1990年   2篇
  1980年   2篇
  1978年   2篇
  1974年   2篇
  1973年   3篇
  1970年   2篇
  1969年   3篇
  1967年   2篇
  1966年   2篇
  1965年   2篇
  1964年   2篇
  1963年   4篇
  1962年   3篇
  1961年   8篇
  1960年   5篇
  1959年   9篇
  1958年   5篇
  1956年   5篇
  1955年   5篇
  1953年   5篇
  1951年   3篇
  1950年   2篇
  1949年   4篇
  1948年   4篇
  1947年   2篇
  1946年   4篇
  1944年   4篇
  1942年   4篇
  1939年   6篇
  1938年   3篇
  1937年   3篇
  1936年   4篇
  1935年   4篇
  1931年   3篇
  1930年   2篇
排序方式: 共有212条查询结果,搜索用时 421 毫秒
91.
92.
93.
94.
95.
96.
97.
98.
BackgroundLoa loa and Mansonella perstans–the causative agents of loiasis and mansonellosis—are vector-borne filarial parasites co-endemic in sub-Saharan Africa. Diagnosis of both infections is usually established by microscopic analysis of blood samples. It was recently established that the odds for detecting Plasmodium spp. is higher in capillary (CAP) blood than in venous (VEN) blood. In analogy to this finding this analysis evaluates potential differences in microfilaraemia of L. loa and M. perstans in samples of CAP and VEN blood.MethodsRecruitment took place between 2015 and 2019 at the CERMEL in Lambaréné, Gabon and its surrounding villages. Persons of all ages presenting to diagnostic services of the research center around noon were invited to participate in the study. A thick smear of each 10 microliters of CAP and VEN blood was prepared and analysed by a minimum of two independent microscopists. Differences of log2-transformed CAP and VEN microfilaraemia were computed and expressed as percentages. Furthermore, odds ratios for paired data were computed to quantify the odds to detect microfilariae in CAP blood versus in VEN blood.ResultsA total of 713 participants were recruited among whom 52% were below 30 years of age, 27% between 30–59 years of age and 21% above 60 years of age. Male-female ratio was 0.84. Among 152 participants with microscopically-confirmed L. loa infection median (IQR) microfilaraemia was 3,650 (275–11,100) per milliliter blood in CAP blood and 2,775 (200–8,875) in VEN blood (p<0.0001), while among 102 participants with M. perstans this was 100 (0–200) and 100 (0–200), respectively (p = 0.44). Differences in linear models amount up to an average of +34.5% (95% CI: +11.0 to +63.0) higher L. loa microfilaria quantity in CAP blood versus VEN blood and for M. perstans it was on average higher by +24.8% (95% CI: +0.0 to +60.5). Concordantly, the odds for detection of microfilaraemia in CAP samples versus VEN samples was 1.24 (95% CI: 0.65–2.34) and 1.65 (95% CI: 1.0–2.68) for infections with L. loa and M. perstans, respectively.ConclusionThis analysis indicates that average levels of microfilaraemia of L. loa are higher in CAP blood samples than in VEN blood samples. This might have implications for treatment algorithms of onchocerciasis and loiasis, in which exact quantification of L. loa microfilaraemia is of importance. Furthermore, the odds for detection of M. perstans microfilariae was higher in CAP than in VEN blood which may pre-dispose CAP blood for detection of M. perstans infection in large epidemiological studies when sampling of large blood quantities is not feasible. No solid evidence for a higher odds of L. loa microfilariae detection in CAP blood was revealed, which might be explained by generally high levels of L. loa microfilaraemia in CAP and VEN blood above the limit of detection of 100 microfilariae/ml. Yet, it cannot be excluded that the study was underpowered to detect a moderate difference.  相似文献   
99.
The goal of this laboratory course is to introduce vertebrate developmental biology to undergraduate students, emphasizing both classical and contemporary aspects of this field. During the course, the students combine the use of living Xenopus laevis material with active tutorial participation, with the aim of illustrating how the fertilized egg can generate the diversity of cell types and complexity of pattern seen only a few days later in the embryo. Special emphasis is given to the observation and manipulation of living material. The laboratory course includes a comprehensive analysis of both oogenesis and early development and is divided into two overlapping parts that combine tutorial and practical approaches. The first part is devoted to oogenesis; oocytes are sorted out, allowed to mature in vitro and observed in histological section. In the second part, students perform an in vitro fertilization of Xenopus eggs and a mesoderm and neural induction assay of animal cap explants. Successful induction of the explants is confirmed by morphological, histological and molecular analyses. Finally, the students observe and comment on selected slides to illustrate the organization of the body plan of the amphibian embryo at an early stage of organogenesis.  相似文献   
100.
Clostridium botulinum is capable of fermenting carbohydrates, but there have been no detailed studies of the uptake of sugars and related substrates. In bacteria, a common and often predominant system of carbohydrate uptake is the phosphoenolpyruvate (PEP)-dependent phosphotransferase system (PTS). This multi-protein complex catalyses a group translocation involving both uptake and phosphorylation of carbohydrates, and is also known to play an important role in environmental sensing and metabolic regulation. The genome of C. botulinum encodes 15 PTSs which have a similar domain structure to the PTS in other bacteria. Based on phylogenetic relationships and analysis of gene clusters, the C. botulinum PTS appears to be involved in the uptake of hexoses, hexose derivatives and disaccharides. C. botulinum also contains the components of PTS-associated regulatory mechanisms which have been characterised in other bacteria. It therefore seems likely that the PTS plays a significant, and previously unrecognised, role in the physiology of this bacterium.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号