首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   131篇
  免费   23篇
  154篇
  2023年   1篇
  2022年   2篇
  2021年   6篇
  2020年   1篇
  2017年   1篇
  2016年   2篇
  2015年   4篇
  2014年   3篇
  2013年   5篇
  2012年   3篇
  2011年   3篇
  2010年   2篇
  2009年   7篇
  2008年   6篇
  2007年   6篇
  2006年   5篇
  2005年   10篇
  2003年   10篇
  2002年   4篇
  2001年   3篇
  2000年   8篇
  1999年   4篇
  1998年   6篇
  1997年   1篇
  1996年   5篇
  1994年   3篇
  1993年   2篇
  1990年   4篇
  1989年   3篇
  1987年   1篇
  1985年   3篇
  1984年   5篇
  1983年   2篇
  1982年   1篇
  1981年   2篇
  1980年   5篇
  1979年   1篇
  1978年   2篇
  1977年   1篇
  1976年   1篇
  1975年   4篇
  1973年   2篇
  1971年   1篇
  1969年   1篇
  1950年   1篇
  1946年   1篇
排序方式: 共有154条查询结果,搜索用时 15 毫秒
41.
In the inner ear of birds, as in mammals, reptiles and amphibians, acetylcholine released from efferent neurons inhibits hair cells via activation of an apamin-sensitive, calcium-dependent potassium current. The particular potassium channel involved in avian hair cell inhibition is unknown. In this study, we cloned a small-conductance, calcium-sensitive potassium channel (gSK2) from a chicken cochlear library. Using RT-PCR, we demonstrated the presence of gSK2 mRNA in cochlear hair cells. Electrophysiological studies on transfected HEK293 cells showed that gSK2 channels have a conductance of approximately 16 pS and a half-maximal calcium activation concentration of 0.74±0.17 M. The expressed channels were blocked by apamin (IC50=73.3±5.0 pM) and d-tubocurarine (IC50=7.6±1.0 M), but were insensitive to charybdotoxin. These characteristics are consistent with those reported for acetylcholine-induced potassium currents of isolated chicken hair cells, suggesting that gSK2 is involved in efferent inhibition of chicken inner ear. These findings imply that the molecular mechanisms of inhibition are conserved in hair cells of all vertebrates.  相似文献   
42.
We hypothesized that rhythmic respiratory-related activity could be generated in pons independent of medullary mechanisms. In decerebrate, cerebellectomized, vagotomized, paralyzed, and ventilated cats, we recorded efferent activities of the phrenic nerve and mylohyoid branch of the trigeminal nerve. Following transections of the brain stem at the pontomedullary junction, the phrenic and trigeminal nerves discharged with independent rhythms. Spontaneous trigeminal discharges eventually ceased but were reestablished after strychnine, doxapram, and/or protriptyline were administered. In some animals having no spontaneous trigeminal discharges after transection, these discharges appeared, with a rhythm different from the phrenic, following administration of these agents. In other cats having no transections between pons and medulla, these pharmacological agents induced trigeminal and phrenic discharges after kainic acid had been injected into the entire dorsal and ventral medullary respiratory nuclei. Phrenic and trigeminal discharges were linked, indicating survival of bulbospinal neurons or presence of pontospinal units. We conclude that rhythms, similar to respiratory rhythm, can occur by mechanisms in isolated pons. Such mechanisms are hypothesized to be within the pneumotaxic center and may underlie the neurogenesis of eupnea.  相似文献   
43.
Because the calmodulin in postsynaptic densities (PSDs) activates a cyclic nucleotide phosphodiesterase, we decided to explore the possibility that the PSD also contains a calmodulin-activatable protein kinase activity. As seen by autoradiographic analysis of coomassie blue-stained SDS polyacrylamide gels, many proteins in a native PSD preparation were phosphorylated in the presence of [γ-(32)P]ATP and Mg(2+) alone. Addition of Ca(2+) alone to the native PSD preparation had little or no effect on phosphorylation. However, upon addition of exogenous calmodulin there was a general increase in background phosphorylation with a statistically significant increase in the phosphorylation of two protein regions: 51,000 and 62,000 M(r). Similar results were also obtained in sonicated or freeze thawed native PSD preparations by addition of Ca(2+) alone without exogenous calmodulin, indicating that the calmodulin in the PSD can activate the kinase present under certain conditions. The calmodulin dependency of the reaction was further strengthened by the observed inhibition of the calmodulin-activatable phosphorylation, but not of the Mg(2+)-dependent activity, by the Ca(2+) chelator, EGTA, which also removes the calmodulin from the structure (26), and by the binding to calmodulin of the antipsychotic drug chlorpromazine in the presence of Ca(2+). In addition, when a calmodulin-deficient PSD preparation was prepared (26), sonicated, and incubated with [γ-(32)P]ATP, Mg(2+) and Ca(2+), one could not induce a Ca(2+)-stimulation of protein kinase activity unless exogenous calmodulin was added back to the system, indicating a reconstitution of calmodulin into the PSD. We have also attempted to identify the two major phosphorylated proteins. Based on SDS polyacrylamide gel electrophoresis, it appears that the major 51,000 M(r) PSD protein is the one that is phosphorylated and not the 51,000 M(r) component of brain intermediate filaments, which is a known PSD contaminant. In addition, papain digestion of the 51,000 M(r) protein revealed multiple phosphorylation sites different from those phosphorylated by the Mg(2+)-dependent kinase(s). Finally, although the calmodulin-activatable protein kinase may phosphorylate proteins I(a) and I(b), the cyclic AMP-dependent protein kinase, which definitely does phosphorylate protein I(a) and I(b) and is present in the PSD, does not phosphorylate the 51,000 and 62,000 M(r) proteins, because specific inhibition of this kinase has no effect on the levels of the phosphorylation of these latter two proteins.  相似文献   
44.
Keeping the arterial pH at 7.4 and PaCO2 at 40 mmHg in eight anesthetized dogs, we acutely raised plasma potassium concentration from 3.4 to 8.2 meq/1, then allowed it to decay back to control levels. The cerebrospinal fluid (CSF)-blood electrical potential difference (pd) increased 13.2 mV per 10-fold increase in plasma [K+]. Again keeping arterial pH at 7.4 and PaCO2 at 40 mmHg, we elevated plasma [K+] in four dogs from 3.3 to 8.0 meq/1 and maintained this level for 6 h. We found 1) that the PD increased from a control value of +1.3 to +8.9mV, showing no tendency to decay over the 6 h; and 2) that the change in PD did not affect the distribution of Na+, K+, H+, Cl-, or HCO3- between blood and CSF over the 6 h. These results suggest that under these conditions the PD between CSF and blood may play no effective role in determining the distributions of these charged species by 6 h. These results are contrasted with recent findings which suggest that H+ and HCO3- are distributed according to passive forces between CSF and blood.  相似文献   
45.
The amino acid sequences of two closely related peptides from Gila monster (Heloderma suspectum) venom are reported. Helospectin I is a 38-residue peptide, His-Ser-Asp-Ala-Thr-Phe-Thr-Ala-Glu-Tyr-Ser-Lys-Leu-Leu-Ala-Lys-Leu-Ala- Leu-Gln - Lys-Tyr-Leu-Glu-Ser-Ile-Leu-Gly-Ser-Ser-Thr-Ser-Pro-Arg-Pro-Pro-Ser-Ser, and helospectin II is a 37-residue peptide identical to helospectin I except that it lacks serine 38. Helospectins are pancreatic secretagogues with structures and bioactivities similar to vasoactive intestinal peptide and other members of the glucagon superfamily. The relative significance of helospectin-I and helospectin-II is presently unknown. Comparison of the 28 residues of vasoactive intestinal peptide with residues 1-28 of helospectin shows that identical amino acids occur in 15 positions. Since members of the glucagon superfamily have similar structures but different biological actions, it is possible that helospectin is more closely related to a mammalian peptide awaiting discovery.  相似文献   
46.
47.
The tissue kallikrein-kinin system exerts a wide spectrum of biological activities in the cardiovascular, renal and central nervous systems. Tissue kallikrein-kinin modulates the proliferation, viability, mobility and functional activity of certain stem cell populations, namely mesenchymal stem cells(MSCs), endothelial progenitor cells(EPCs), mononuclear cell subsets and neural stem cells. Stimulation of these stem cells by tissue kallikrein-kinin may lead to protection against renal, cardiovascular and neural damage by inhibiting apoptosis, inflammation, fibrosis and oxidative stress and promoting neovascularization. Moreover, MSCs and EPCs genetically modified with tissue kallikrein are resistant to hypoxia- and oxidative stress-induced apoptosis, and offer enhanced protective actions in animal models of heart and kidney injury and hindlimb ischemia. In addition, activation of the plasma kallikrein-kinin system promotes EPC recruitment to the inflamed synovium of arthritic rats. Conversely, cleaved high molecular weight kininogen, a product of plasma kallikrein, reduces the viability and vasculogenic activity of EPCs. Therefore, kallikrein-kinin provides a new approach in enhancing the efficacy of stem cell therapy for human diseases.  相似文献   
48.
49.
The structure of gap junctions in the rabbit ciliary epithelium, corneal endothelium, and mouse stomach and liver was studied with the freeze-fracturing technique after rapid freezing to near 4 degrees K from the living state. In the ciliary epithelium, the connexons were randomly distributed, separated by smooth membrane matrix. In the corneal endothelium, both random and crystalline arrangements of the connexons were observed. In the stomach and liver, the connexons were packed but not crystalline. Experimental anoxia or lowered pH caused crystallization of the connexons within 20-30 min. In the ciliary epithelium, the effects of prolonged anoxia or low pH could not be reversed . In addition, invaginated or annular gap junctions increased in number, but their connexons were usually distributed at random. Rapid freezing thus demonstrates that gap junctions of different tissues are highly pleiomorphic in the living state, and this may explain their variations in structure after chemical fixation. The slow time-course and irreversibility of the morphological changes induced by prolonged anoxia or low pH suggest that connexon crystallization may be a long-term consequence rather than the morphological correlate of the switch to high resistance.  相似文献   
50.
A soybean seed urease-null produces urease in cell culture   总被引:2,自引:7,他引:2       下载免费PDF全文
Itachi, a soybean (Glycine max [L.] Merr.) variety with 0.2% normal seed urease activity, was recovered from a screen of 6,000 entries in the United States Department of Agriculture soybean germplasm collection. No urease antigen in Itachi seed extracts was detected by double diffusion or by rocket immunoelectrophoresis. Native gels stained for protein or ureolytic activity revealed no detectable urease holoenzyme. An anti-urease antibody affinity column was used to remove all detectable urease activity and antigen from `wild type' (cv. Prize) seed extracts. Affinity column effluent and nonchromatographed Itachi extracts both lack a species which comigrates with purified urease subunits in sodium dodecylsulfate polyacrylamide gels. Inability to detect urease antigen or urease protein suggests that during development of Itachi seeds there is no synthesis of urease protein or that, at most, its synthesis is 0.2% of wild type (Prize).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号