首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   293篇
  免费   15篇
  2021年   5篇
  2020年   3篇
  2019年   3篇
  2018年   5篇
  2017年   3篇
  2016年   8篇
  2015年   10篇
  2014年   11篇
  2013年   8篇
  2012年   18篇
  2011年   24篇
  2010年   14篇
  2009年   5篇
  2008年   20篇
  2007年   33篇
  2006年   11篇
  2005年   16篇
  2004年   11篇
  2003年   10篇
  2002年   13篇
  2000年   4篇
  1999年   3篇
  1998年   2篇
  1997年   5篇
  1996年   3篇
  1995年   3篇
  1993年   2篇
  1992年   4篇
  1991年   1篇
  1990年   3篇
  1989年   3篇
  1988年   2篇
  1987年   1篇
  1986年   2篇
  1985年   1篇
  1984年   4篇
  1983年   2篇
  1982年   2篇
  1981年   3篇
  1980年   4篇
  1979年   2篇
  1977年   4篇
  1976年   3篇
  1974年   2篇
  1973年   2篇
  1971年   1篇
  1970年   3篇
  1967年   1篇
  1965年   1篇
  1963年   1篇
排序方式: 共有308条查询结果,搜索用时 406 毫秒
161.
The free radical generating activity of airborne particulate matter (PM10) has been proposed as a primary mechanism in biological activity of ambient air pollution. In an effort to determine the impact of the complex mixtures of extractable organic matter (EOM) from airborne particles on oxidative damage to DNA, the level of 8-oxo-2′-deoxyguanosine (8-oxodG), the most prevalent and stable oxidative lesion, was measured in the human metabolically competent cell line Hep G2. Cultured cells were exposed to equivalent EOM concentrations (5–150 μg/ml) and oxidative DNA damage was analyzed using a modified single cell gel electrophoresis (SCGE), which involves the incubation of whole cell DNA with repair specific DNA endonuclease, which cleaves oxidized DNA at the sites of 8-oxodG. EOMs were extracted from PM10 collected daily (24 h intervals) in three European cities: Prague (Czech Republic, two monitoring sites, Libuš and Smíchov), Košice (Slovak Republic) and Sofia (Bulgaria) during 3-month sampling periods in the winter and summer seasons. No substantial time- and dose-dependent increase of oxidative DNA lesions was detected in EOM-treated cells with the exception of the EOM collected at the monitoring site Košice, summer sampling. In this case, 2 h cell exposure to EOM resulted in a slight but significant increase of oxidative DNA damage at three from total of six concentrations. The mean 8-oxodG values at these concentrations ranged from 15.3 to 26.1 per 106 nucleotides with a value 3.5 per 106 nucleotides in untreated cells. B[a]P, the positive control, induced a variable but insignificant increase of oxidative DNA damage in Hep G2 cell (approximately 1.6-fold increase over control value).Based on these data we believe that EOM samples extracted from airborne particle PM10 play probably only a marginal role in oxidative stress generation and oxidative lesion formation to DNA. However, adsorbed organic compounds can undergo various interactions (additive or synergistic) with other PM components or physical factors (UV-A radiation) and in this way they might enhance/multiply the adverse health effects of air pollution.  相似文献   
162.
Epidemiologic studies indicate that prolonged exposure to particulate air pollution may be associated with increased risk of cardiovascular diseases and cancer in general population. These effects may be attributable to polycyclic aromatic hydrocarbons (PAHs) adsorbed to respirable air particles. It is expected that metabolic and DNA repair gene polymorphisms may modulate individual susceptibility to PAH exposure. This study investigates relationships between exposure to PAHs, polymorphisms of these genes and DNA adducts in group of occupationally exposed policemen (EXP, N = 53, males, aged 22–50 years) working outdoors in the downtown area of Prague and in matched “unexposed” controls (CON, N = 52). Personal exposure to eight carcinogenic PAHs (c-PAHs) was evaluated by personal samplers during working shift prior to collection of biological samples. Bulky-aromatic DNA adducts were analyzed in lymphocytes by 32P-postlabeling assay. Polymorphisms of metabolizing (GSTM1, GSTP1, GSTT1, EPHX1, CYP1A1-MspI) and DNA repair (XRCC1, XPD) genes were determined by PCR-based RFLP assays. As potential modifiers and/or cofounders, urinary cotinine levels were analyzed by radioimmunoassay, plasma levels of vitamins A, C, E and folates by HPLC, cholesterol and triglycerides using commercial kits. During the sampling period ambient particulate air pollution was as follows: PM10 32–55 μg/m3, PM2.5 27–38 μg/m3, c-PAHs 18–22 ng/m3; personal exposure to c-PAHs: 9.7 ng/m3 versus 5.8 ng/m3 (P < 0.01) for EXP and CON groups, respectively. The total DNA adduct levels did not significantly differ between EXP and CON groups (0.92 ± 0.28 adducts/108 nucleotides versus 0.82 ± 0.23 adducts/108 nucleotides, P = 0.065), whereas the level of the B[a]P-“like” adduct was significantly higher in exposed group (0.122 ± 0.036 adducts/108 nucleotides versus 0.099 ± 0.035 adducts/108 nucleotides, P = 0.003). A significant difference in both the total (P < 0.05) and the B[a]P-“like” DNA adducts (P < 0.01) between smokers and nonsmokers within both groups was observed. A significant positive association between DNA adduct and cotinine levels (r = 0.368, P < 0.001) and negative association between DNA adduct and vitamin C levels (r = −0.290, P = 0.004) was found. The results of multivariate regression analysis showed smoking, vitamin C, polymorphisms of XPD repair gene in exon 23 and GSTM1 gene as significant predictors for total DNA adduct levels. Exposure to ambient air pollution, smoking, and polymorphisms of XPD repair gene in exon 6 were significant predictors for B[a]P-“like” DNA adduct. To sum up, this study suggests that polymorphisms of DNA repair genes involved in nucleotide excision repair may modify aromatic DNA adduct levels and may be useful biomarkers to identify individuals susceptible to DNA damage resulting from c-PAHs exposure.  相似文献   
163.
164.
165.
Unlike seed plants where global biogeographical patterns typically involve interspecific phylogenetic history, spore‐producing bryophyte species often have intercontinental distributions that are best understood from a population genetic perspective. We sought to understand how reproductive processes, especially dispersal, have contributed to the intercontinental ‘Pacific Rim’ distribution of Sphagnum miyabeanum. In total, 295 gametophyte plants from western North America (California, Oregon, British Columbia, Alaska), Russia, Japan, and China were genotyped at 12 microsatellite loci. Nucleotide sequences were obtained for seven anonymous nuclear loci plus two plastid regions from 21 plants of S. miyabeanum and two outgroup species. We detected weak but significant genetic differentiation among plants from China, Japan, Alaska, British Columbia, and the western USA. Alaskan plants are genetically most similar to Asian plants, and British Columbian plants are most similar to those in the western USA. There is detectable migration between regions, with especially high levels between Alaska and Asia (China and Japan). Migration appears to be recent and/or ongoing, and more or less equivalent in both directions. There is weak (but significant) isolation‐by‐distance within geographical regions, and the slope of the regression of genetic on geographical distance differs for Asian versus North American plants. A distinctive Vancouver Island morphotype is very weakly differentiated, and does not appear to be reproductively isolated from plants of the normal morphotype. The intercontinental geographical range of S. miyabeanum reflects recent and probably ongoing migration, facilitated by the production of tiny spores capable of effective long distance dispersal. The results of the present study are consistent with Pleistocene survival of S. miyabeanum in unglaciated Beringia, although we cannot eliminate the possibility that the species recolonized Alaska from Asia more recently. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 111 , 17–37.  相似文献   
166.
Microbial populations in nature often form organized multicellular structures (biofilms, colonies) occupying different surfaces including host tissues and medical devices. How yeast cells within such populations cooperate and how their dimorphic switch to filamentous growth is regulated are therefore important questions. Studying population development, we discovered that Saccharomyces cerevisiae microcolonies early after their origination from one cell successfully occupy the territory via dimorphic transition, which is induced by ammonia and other volatile amines independently on cell ploidy and nutrients. It results in oriented pseudohyphal cell expansion in the direction of ammonia source, which consequently leads to unification of adjacent microcolonies to one more numerous entity. The further population development is accompanied by another dimorphic switch, which is strictly dependent on Flo11p adhesin and is indispensable for proper formation of biofilm-like aerial 3-D colony architecture. In this, Flo11p is required for both elongation of cells organized to radial clusters (formed earlier within the colony) and their subsequent pseudohyphal expansion. Just before this expansion, Flo11p relocalizes from the bud-neck of radial cell clusters also to the tip of elongated cells.  相似文献   
167.
168.
169.
170.

Background  

A synergistic cytotoxic effect has been hypothesized for taxanes and capecitabine, a prodrug of 5-fluorouracil. Based on preclinical studies, this synergism has been attributed to an up-regulation of the enzyme thymidine phosphorylase (TP). Beside tumour tissue, TP is highly expressed in white blood cells, possibly causing increased hematotoxicity, when taxanes are combined with capecitabine. So far, this hypothesis has not been investigated in humans.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号