首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   293篇
  免费   15篇
  2021年   5篇
  2020年   3篇
  2019年   3篇
  2018年   5篇
  2017年   3篇
  2016年   8篇
  2015年   10篇
  2014年   11篇
  2013年   8篇
  2012年   18篇
  2011年   24篇
  2010年   14篇
  2009年   5篇
  2008年   20篇
  2007年   33篇
  2006年   11篇
  2005年   16篇
  2004年   11篇
  2003年   10篇
  2002年   13篇
  2000年   4篇
  1999年   3篇
  1998年   2篇
  1997年   5篇
  1996年   3篇
  1995年   3篇
  1993年   2篇
  1992年   4篇
  1991年   1篇
  1990年   3篇
  1989年   3篇
  1988年   2篇
  1987年   1篇
  1986年   2篇
  1985年   1篇
  1984年   4篇
  1983年   2篇
  1982年   2篇
  1981年   3篇
  1980年   4篇
  1979年   2篇
  1977年   4篇
  1976年   3篇
  1974年   2篇
  1973年   2篇
  1971年   1篇
  1970年   3篇
  1967年   1篇
  1965年   1篇
  1963年   1篇
排序方式: 共有308条查询结果,搜索用时 31 毫秒
131.
132.
A longevity gene called Indy (for 'I'm not dead yet'), with similarity to mammalian genes encoding sodium-dicarboxylate cotransporters, was identified in Drosophila melanogaster. Functional studies in Xenopus oocytes showed that INDY mediates the flux of dicarboxylates and citrate across the plasma membrane, but the specific transport mechanism mediated by INDY was not identified. To test whether INDY functions as an anion exchanger, we examined whether substrate efflux is stimulated by transportable substrates added to the external medium. Efflux of [14C]citrate from INDY-expressing oocytes was greatly accelerated by the addition of succinate to the external medium, indicating citrate-succinate exchange. The succinate-stimulated [14C]citrate efflux was sensitive to inhibition by DIDS (4,4'-di-isothiocyano-2,2'-disulphonic stilbene), as demonstrated previously for INDY-mediated succinate uptake. INDY-mediated efflux of [14C]citrate was also stimulated by external citrate and oxaloacetate, indicating citrate-citrate and citrate-oxaloacetate exchange. Similarly, efflux of [14C]succinate from INDY-expressing oocytes was stimulated by external citrate, alpha-oxoglutarate and fumarate, indicating succinate-citrate, succinate-alpha-oxoglutarate and succinate-fumarate exchange respectively. Conversely, when INDY-expressing Xenopus oocytes were loaded with succinate and citrate, [14C]succinate uptake was markedly stimulated, confirming succinate-succinate and succinate-citrate exchange. Exchange of internal anion for external citrate was markedly pH(o)-dependent, consistent with the concept that citrate is co-transported with a proton. Anion exchange was sodium-independent. We conclude that INDY functions as an exchanger of dicarboxylate and tricarboxylate Krebs-cycle intermediates. The effect of decreasing INDY activity, as in the long-lived Indy mutants, may be to alter energy metabolism in a manner that favours lifespan extension.  相似文献   
133.
Two different types of juvenogens, biochemically targeted hormonogen compounds were tested for their potency to act as insect pest management agents. In the performed biological screening, wax-like esteric juvenogens (3-10) proved to be convenient agents for controlling blowfly and termites, and displayed species selectivity: cis-N-{2-[4-(2-butanoyloxycyclohexyl)methyl]phenoxy}ethyl carbamate (3) was highly active on blowfly (Neobellieria bullata), while trans-N-{2-[4-(2-hexadecanoyloxycyclohexyl)methyl]-phenoxy}ethyl carbamate (6) showed high activity on termite (Prorhinotermes simplex). Glycosidic juvenogens, isomeric N-{2-{4-{[2-(beta-D-galactopyranosyloxy)cyclohexyl]methyl}phenoxy}ethyl carbamates (13 and 14), were proved to act as systemic agents, suitable for protecting plants against phytophagous insects (e.g. aphids). Due to the prolonged action of juvenogens, which is connected with the sequential liberating of the biologically active molecule of the insect juvenile hormone bioanalog from the juvenogen molecule by means of enzymic systems of target insects and/or their host plants, more insect individuals can be treated by juvenogens, which are species-targeted structures due to their different physicochemical properties. The results achieved with both types of juvenogens were promising, concerning their final effect on the tested insect species, and the compounds 3-6, 9 (cis-(9Z)-N-{2-[4-(2-(octadec-9-enoyl)oxycyclohexyl)methyl]phenoxy}ethyl carbamate), 13 and 14 proved to represent convenient insect pest management agents for potential practical applications against different insect pests.  相似文献   
134.
Human SNM1A and SNM1B/Apollo have both been implicated in the repair of DNA interstrand cross-links (ICLs) by cellular studies, and SNM1B is also required for telomere protection. Here, we describe studies on the biochemical characterization of the SNM1A and SNM1B proteins. The results reveal some fundamental differences in the mechanisms of the two proteins. Both SNM1A and SNM1B digest double-stranded and single-stranded DNA with a 5'-to-3' directionality in a reaction that is stimulated by divalent cations, and both nucleases are inhibited by the zinc chelator o-phenanthroline. We find that SNM1A has greater affinity for single-stranded DNA over double-stranded DNA that is not observed with SNM1B. Although both proteins demonstrate a low level of processivity on low molecular weight DNA oligonucleotide substrates, when presented with high molecular weight DNA, SNM1A alone is rendered much more active, being capable of digesting kilobase-long stretches of DNA. Both proteins can digest past ICLs induced by the non-distorting minor groove cross-linking agent SJG-136, albeit with SNM1A showing a greater capacity to achieve this. This is consistent with the proposal that SNM1A and SNM1B might exhibit some redundancy in ICL repair. Together, our work establishes differences in the substrate selectivities of SNM1A and SNM1B that are likely to be relevant to their in vivo roles and which might be exploited in the development of selective inhibitors.  相似文献   
135.
136.
137.
138.
139.
The recently discovered prolactin-releasing peptide (PrRP) binds to the PrRP receptor and is involved in endocrine regulation and energy metabolism. However, its main physiological role is currently unknown. Two biologically active isoforms of PrRP exist: the 31 (PrRP31) and the 20 (PrRP20) amino acid forms, which both contain a C-terminal Phe amide sequence. In the present study, the PrRP receptor was immunodetected in three rodent tumor pituitary cell lines: GH3, AtT20 and RC-4B/C cells. The saturation binding of radioiodinated PrRP31 to intact cells demonstrated a Kd in the 10−9 M range and a Bmax in the range of tens of thousands binding sites per cell. For binding to RC-4B/C cells, both PrRP31 and PrRP20 competed with 125I-PrRP31 with a similar Ki. The C-terminal analog PrRP13 showed lower binding potency compared to PrRP31 and PrRP20. All PrRP analogs increased the phosphorylation of MAPK/ERK1/2 (mitogen-activated phosphorylase/extracellular-regulated kinase) and CREB (cAMP response element-binding protein) in RC-4B/C cells. Additionally, prolactin release was induced by the PrRP analogs in a dose-dependent manner in RC-4B/C cells. Finally, food intake after intracerebroventricular administration of PrRP analogs in fasted mice was followed. Both PrRP31 and PrRP20 decreased food intake, but PrRP13 did not show significant effect. Studies on pituitary cell lines expressing the PrRP receptor are more physiologically relevant than those on cells transfected with the receptor. This cell type can be used as a model system for pharmacological studies searching for PrRP antagonists and stable effective PrRP agonists, as these drugs may have potential as anti-obesity agents.  相似文献   
140.
Despite the already established route of chemically catalyzed transesterification reaction in biodiesel production, due to some of its shortcomings, biocatalysts such as lipases present a vital alternative. Namely, it was noticed that one of the key shortcomings for the optimization of the enzyme catalyzed biodiesel synthesis process is the information on the lipase activity in the reaction mixture. In addition to making optimization difficult, it also makes it impossible to compare the results of the independent research. This article shows how lipase intended for use in biodiesel synthesis can be easily and accurately characterized and what is the enzyme concentration that enables achievement of the desired level of fatty acid methyl esters (FAME) in the final product mixture. Therefore, this study investigated the effect of two different activity loads of Burkholderia cepacia lipase on the biodiesel synthesis varying the pH and temperature optimal for lipase activity. The optimal lipase pH and temperature were determined by two different enzyme assays: spectrophotometric and titrimetric. The B. cepacia lipase pH optimum differentiated between assays, while the lipase optimally hydrolyzed substrates at 50°C. The analysis of FAME during 24 hr of biodiesel synthesis, at two different enzyme concentrations, pH 7, 8, and 10, and using two different buffers, revealed that the transesterification reaction at optimal pH, 1 hr reaction time and lipase activity load of 250 U per gram of reaction mixture was sufficient to produce more than 99% FAME.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号