首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   232篇
  免费   15篇
  247篇
  2023年   2篇
  2022年   2篇
  2021年   9篇
  2020年   6篇
  2019年   3篇
  2018年   5篇
  2017年   8篇
  2016年   10篇
  2015年   7篇
  2014年   12篇
  2013年   8篇
  2012年   23篇
  2011年   16篇
  2010年   13篇
  2009年   19篇
  2008年   12篇
  2007年   9篇
  2006年   14篇
  2005年   7篇
  2004年   12篇
  2003年   11篇
  2002年   15篇
  2001年   1篇
  2000年   2篇
  1999年   5篇
  1998年   2篇
  1997年   3篇
  1994年   2篇
  1992年   2篇
  1989年   1篇
  1987年   3篇
  1986年   1篇
  1982年   1篇
  1980年   1篇
排序方式: 共有247条查询结果,搜索用时 0 毫秒
191.
192.
Pattern recognition receptors (PRR), like Toll-like receptors (TLR) and NOD-like receptors (NLR), are involved in the detection of microbial infections and tissue damage by cells of the innate immune system. Recently, we and others have demonstrated that TLR2 can additionally function as a costimulatory receptor on CD8 T cells. Here, we establish that the intracytosolic receptor NOD1 is expressed and functional in CD8 T cells. We show that C12-iEDAP, a synthetic ligand for NOD1, has a direct impact on both murine and human CD8 T cells, increasing proliferation and effector functions of cells activated via their T cell receptor (TCR). This effect is dependent on the adaptor molecule RIP2 and is associated with an increased activation of the NF-κB, JNK and p38 signaling pathways. Furthermore, we demonstrate that NOD1 stimulation can cooperate with TLR2 engagement on CD8 T cells to enhance TCR-mediated activation. Altogether our results indicate that NOD1 might function as an alternative costimulatory receptor in CD8 T cells. Our study provides new insights into the function of NLR in T cells and extends to NOD1 the recent concept that PRR stimulation can directly control T cell functions.  相似文献   
193.

Background

Diapause, a condition of developmental arrest and metabolic depression exhibited by a wide range of animals is accompanied by complex physiological and biochemical changes that generally enhance environmental stress tolerance and synchronize reproduction. Even though some aspects of diapause have been well characterized, very little is known about the full range of molecular and biochemical modifications underlying diapause in non-model organisms.

Methodology/Principal Findings

In this study we focused on the parasitic wasp, Praon volucre that exhibits a pupal diapause in response to environmental signals. System-wide metabolic changes occurring during diapause were investigated using GC-MS metabolic fingerprinting. Moreover, proteomic changes were studied in diapausing versus non-diapausing phenotypes using a combination of two-dimensional differential gel electrophoresis (2D-DIGE) and mass spectrometry. We found a reduction of Krebs cycle intermediates which most likely resulted from the metabolic depression. Glycolysis was galvanized, probably to favor polyols biosynthesis. Diapausing parasitoids accumulated high levels of cryoprotective polyols, especially sorbitol. A large set of proteins were modulated during diapause and these were involved in various functions such as remodeling of cytoskeleton and cuticle, stress tolerance, protein turnover, lipid metabolism and various metabolic enzymes.

Conclusions/Significance

The results presented here provide some first clues about the molecular and biochemical events that characterize the diapause syndrome in aphid parasitoids. These data are useful for probing potential commonality of parasitoids diapause with other taxa and they will help creating a general understanding of diapause underpinnings and a background for future interpretations.  相似文献   
194.
VKORC1 (vitamin K epoxide reductase complex subunit 1, 16p11.2) is the main genetic determinant of human response to oral anticoagulants of antivitamin K type (AVK). This gene was recently suggested to be a putative target of positive selection in East Asian populations. In this study, we genotyped the HGDP-CEPH Panel for six VKORC1 SNPs and downloaded chromosome 16 genotypes from the HGDP-CEPH database in order to characterize the geographic distribution of footprints of positive selection within and around this locus. A unique VKORC1 haplotype carrying the promoter mutation associated with AVK sensitivity showed especially high frequencies in all the 17 HGDP-CEPH East Asian population samples. VKORC1 and 24 neighboring genes were found to lie in a 505 kb region of strong linkage disequilibrium in these populations. Patterns of allele frequency differentiation and haplotype structure suggest that this genomic region has been submitted to a near complete selective sweep in all East Asian populations and only in this geographic area. The most extreme scores of the different selection tests are found within a smaller 45 kb region that contains VKORC1 and three other genes (BCKDK, MYST1 (KAT8), and PRSS8) with different functions. Because of the strong linkage disequilibrium, it is not possible to determine if VKORC1 or one of the three other genes is the target of this strong positive selection that could explain present-day differences among human populations in AVK dose requirement. Our results show that the extended region surrounding a presumable single target of positive selection should be analyzed for genetic variation in a wide range of genetically diverse populations in order to account for other neighboring and confounding selective events and the hitchhiking effect.  相似文献   
195.
ABSTRACT: BACKGROUND: Placental malaria (PM) is one major feature of malaria during pregnancy. A murine model of experimental PM using BALB/c mice infected with Plasmodium berghei ANKA was recently established, but there is need for additional PM models with different parasite/host combinations that allow to interrogate the involvement of specific host genetic factors in the placental inflammatory response to Plasmodium infection. METHODS: A mid-term infection protocol was used to test PM induction by three P. berghei parasite lines, derived from the K173, NK65 and ANKA strains of P. berghei that fail to induce cerebral malaria (CM) in the susceptible C57BL/6 mice. Parasitaemia course, pregnancy outcome and placenta pathology induced by the three parasite lines were compared. RESULTS: The three P. berghei lines were able to evoke severe PM pathology and poor pregnancy outcome features. The results indicate that parasite components required to induce PM are distinct from CM. Nevertheless, infection with parasites of the ANKADeltapm4 line, which lack expression of plasmepsin 4, displayed milder disease phenotypes associated with a strong innate immune response as compared to infections with NK65 and K173 parasites. CONCLUSIONS: Infection of pregnant C57BL/6 females with K173, NK65 and ANKADeltapm4 P. berghei parasites provide experimental systems to identify host molecular components involved in PM pathogenesis mechanisms.  相似文献   
196.
ObjectiveTo describe the potential long-term risk of malnutrition after Roux-en-Y gastric bypass (GBP) through an uncommon occurrence of inflammatory bowel disease (IBD) postoperatively, which posed a serious threat to the nutritional status and the life of the patient.MethodWe present a case report of a 44-year-old woman in whom Crohn disease developed 4 years after she had undergone GBP. The double insult of IBD and GBP resulted in severe malnutrition, with a serum albumin concentration of 0.9 g/dL (reference range, 3.5 to 5.0), weight loss, and watery diarrhea necessitating 6 hospital admissions during a period of 7 months.ResultUltimately, the administration of total parenteral nutrition with aggressive macronutrient, vitamin, and mineral repletion resulted in substantial improvement in the patient’s strength, function, and quality of life, in parallel with diminished symptoms of IBD.ConclusionRarely, IBD develops after GBP, but the relationship between the 2 conditions remains unclear. Regardless, in addition to the altered anatomy after bariatric surgery, the further insult of IBD poses a severe threat to the nutritional status of affected patients. Malnutrition needs to be recognized and aggressively treated. Nutritional markers should be followed closely in this population of bariatric patients in an effort to avert the onset of severe malnutrition. (Endocr Pract. 2012;18:e21-e25)  相似文献   
197.
Matrix-assisted laser desorption/ionization (MALDI) tissue imaging mass spectrometry is particularly promising among the numerous applications of mass spectrometry. It is used for probing and analyzing the spatial arrangement of a wide range of molecules, including proteins, peptides, lipids, drugs, and metabolites, directly in thin slices of tissue. In the field of proteomics, the technology avoids tedious and time-consuming extraction and fractionation steps classically required for sample analysis. MALDI imaging mass spectrometry is increasingly recognized as a powerful method for clinical proteomics, particularly in cancer research. The technology has particular potential for the discovery of new tissue biomarker candidates, classification of tumors, early diagnosis or prognosis, elucidating pathogenesis pathways, and therapy monitoring. Over recent years, MALDI imaging mass spectrometry has been used for molecular profiling and imaging directly in male and female reproductive tissues. This review will consider some of the recent publications in the field, addressing a range of issues covering embryo development, gene expression product profiling during gametogenesis, and seeking and identifying biomarkers of reproductive cancers. The wealth of advances in mass spectrometry imaging will inevitably attract biologists and clinicians as the advantages and power of this technology become more widely known. This review will also discuss bottlenecks and the many technical issues that remain to be resolved before laboratories in the field can adopt the technology. We foresee that MALDI imaging mass spectrometry will have a major impact in reproductive research by opening new avenues to the understanding of various molecular mechanisms and the diagnosis of reproductive pathologies.  相似文献   
198.
199.
The malaria parasite Plasmodium largely modifies the infected erythrocyte through the export of proteins to multiple sites within the host cell. This remodeling is crucial for pathology and translocation of virulence factors to the erythrocyte surface. In this study, we investigated localization and export of small exported proteins/early transcribed membrane proteins (SEP/ETRAMPs), conserved within Plasmodium genus. This protein family is characterized by a predicted signal peptide, a short lysine-rich stretch, an internal transmembrane domain and a highly charged C-terminal region of variable length. We show here that members of the rodent Plasmodium berghei family are components of the parasitophorous vacuole membrane (PVM), which surrounds the parasite throughout the erythrocytic cycle. During P. berghei development, vesicle-like structures containing these proteins detach from the PVM en route to the host cytosol. These SEP-containing vesicles remain associated with the infected erythrocyte ghosts most probably anchored to the membrane skeleton. Transgenic lines expressing the green fluorescent protein appended to different portions of sep-coding region allowed us to define motifs required for protein export. The highly charged terminal region appears to be involved in protein-protein interactions.  相似文献   
200.
Immature dendritic cells efficiently capture exogenous antigens in peripheral tissues. In an inflammatory environment, dendritic cells are activated and become highly competent antigen-presenting cells. Upon activation, they lose their ability for efficient endocytosis and gain capability to migrate to secondary lymphoid organs. In addition, peptide loading of MHC class II molecules is enhanced and MHC class II/peptide complexes are redistributed from an intracellular location to the plasma membrane. Using immuno-electron microscopy, we show that activation of human monocyte-derived dendritic cells induced striking modifications of the lysosomal multilaminar MHC class II compartments (MIICs), whereby electron-dense tubules and vesicles emerged from these compartments. Importantly, we observed that MHC class II expression in these tubules/vesicles transiently increased, while multilaminar MIICs showed a strongly reduced labeling of MHC class II molecules. This suggests that formation of the tubules/vesicles from multilaminar MIICs could be linked to transport of MHC class II from these compartments to the cell surface. Further characterization of endocytic organelles with lysosomal marker proteins, such as the novel dendritic cell-specific lysosomal protein DC-LAMP, HLA-DM and CD68, revealed differential sorting of these markers to the tubules and vesicles .  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号