首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   230篇
  免费   15篇
  2022年   2篇
  2021年   9篇
  2020年   6篇
  2019年   3篇
  2018年   5篇
  2017年   8篇
  2016年   10篇
  2015年   7篇
  2014年   12篇
  2013年   8篇
  2012年   23篇
  2011年   16篇
  2010年   13篇
  2009年   19篇
  2008年   12篇
  2007年   9篇
  2006年   14篇
  2005年   7篇
  2004年   12篇
  2003年   11篇
  2002年   15篇
  2001年   1篇
  2000年   2篇
  1999年   5篇
  1998年   2篇
  1997年   3篇
  1994年   2篇
  1992年   2篇
  1989年   1篇
  1987年   3篇
  1986年   1篇
  1982年   1篇
  1980年   1篇
排序方式: 共有245条查询结果,搜索用时 171 毫秒
131.
Phytomonas spp. are members of the family Trypanosomatidae that parasitize plants and may cause lethal diseases in crops such as Coffee Phloem necrosis, Hartrot in coconut, and Marchitez sorpresiva in oil palm. In this study, the molecular karyotype of 6 isolates from latex plants has been entirely elucidated by pulsed-field gel electrophoresis and DNA hybridization. Twenty-one chromosomal linkage groups constituting heterologous chromosomes and sizing between 0.3 and 3 Mb could be physically defined by the use of 75 DNA markers (sequence-tagged sites and genes). From these data, the genome size can be estimated at 25.5 (+/-2) Mb. The physical linkage groups were consistently conserved in all strains examined. Moreover, the finding of several pairs of different-sized homologous chromosomes strongly suggest diploidy for this organism. The definition of the complete molecular karyotype of Phytomonas represents an essential primary step toward sequencing the genome of this parasite of economical importance.  相似文献   
132.
Beyond increased cAMP synthesis, calcium influx has been involved in signal transduction triggered by the gonadotropin follicle-stimulating hormone (FSH), the main regulator of Sertoli cells functions. In order to delineate a possible involvement of calcium in the regulation of proteoglycan synthesis, we have examined the effect of low-voltage-activated calcium channel blocker verapamil on both [(35)S]-sulfate and [(3)H]-glucosamine incorporation into proteoglycan molecules neosynthesized by cultured Sertoli cells from 20-day-old rats. Verapamil induced a dose- and time-dependent decrease in labeling of both secreted and cell-associated proteoglycans, as determined by quantitative solid-phase assay. This effect was mimicked by the addition of the calcium chelator EGTA, suggesting that verapamil effect resulted from the inhibition of transmembrane calcium influx. The decrease in apparent proteoglycan synthesis appeared to be attributable primarily to a lowering of the glycanation process, as shown by experiments using an exogenous acceptor for glycosaminoglycan synthesis. Moreover, verapamil induced a decrease in relative proportion of heparan sulfate proteoglycans in the cell layer. Pulse-chase kinetics demonstrated that verapamil also altered proteoglycan catabolism, leading to glycosaminoglycan retention in the cell layer and inhibiting the proteoglycan desulfation step. We conclude that intracellular calcium is essential to maintain Sertoli cell proteoglycan expression and could thus be involved in the repression of Sertoli cell cAMP-dependent syntheses such as estradiol production.  相似文献   
133.
In humans, a family of five genes encodes the CD1 molecules. Four of these proteins, CD1a, b, c, and d, are expressed on the plasma membrane and traffic between the cell surface and endocytic compartments, where they are loaded with antigenic glycolipids. The existence of human CD1e was demonstrated recently. This molecule surprisingly remains inside the cell, accumulating mainly in the Golgi compartments of immature dendritic cells and in the late endosomes of mature dendritic cells. In the latter compartments, CD1e is cleaved and becomes soluble. To determine whether these properties were specific to human CD1e, we investigated the presence and characteristics of CD1e in the rhesus macaque, an evolutionarily distant species of the primate lineage. Our results show that the cellular and biochemical properties of the human and simian CD1e molecules are similar, suggesting that the particular intracellular distribution of CD1e is important for its physiological and/or immunological function.  相似文献   
134.
Little is known about the role of mitochondrial NADP(+)-isocitrate dehydrogenase (NADP(+)-ICDH) in the heart, where this enzyme shows its highest expression and activity. We tested the hypothesis that in the heart, NADP(+)-ICDH operates in the reverse direction of the citric acid cycle (CAC) and thereby may contribute to the fine regulation of CAC activity (Sazanov and Jackson, FEBS Lett 344: 109-116, 1994). We documented a reverse flux through this enzyme in rat hearts perfused with the medium-chain fatty acid octanoate using [U-(13)C(5)]glutamate and mass isotopomer analysis of tissue citrate (Comte et al., J Biol Chem 272: 26117-26124, 1997). In this study, we assessed the significance of our previous finding by perfusing hearts with long-chain fatty acids and tested the effects of changes in O(2) supply. We showed that under all of these conditions citrate was enriched in an isotopomer containing five (13)C atoms. This isotopomer can only be explained by substrate flux through reversal of the NADP(+)-ICDH reaction, which is evaluated at 3-7% of flux through citrate synthase. Small variations in reversal fluxes induced by low-flow ischemia that mimicked hibernation occurred despite major changes in contractile function and O(2) consumption of the heart as well as citrate and succinate release rates and tissue levels. Our data show a reverse flux through NADP(+)-ICDH and support its hypothesized role in the fine regulation of CAC activity in the normoxic and O(2)-deprived heart.  相似文献   
135.
136.
A heterogeneity of CCK2 receptors has been reported which could correspond to different states of coupling to G proteins and/or association with different second messenger systems. To investigate these hypotheses, the wild-type CCK2 receptor and three mutants F347A, D100N and K333M/K334T/R335L, expected to modify the coupling of the G protein with the third intracellular loop of the receptor, were transfected into Cos-7 cells and their binding and signalling properties were evaluated using the natural ligand CCK8. Activation of wild-type as well as F347A, D100N or K333M/K334T/R335L CCK2 receptors by this ligand led to a similar arachidonic acid release which was blocked by pertussis toxin and the phospholipase A2 inhibitor, mepacrine. Nevertheless, in contrast to the wild-type CCK2 receptor, addition of CCK8 to cells transfected with the F347A or K333M/K334T/R335L mutants did not result in the production of inositol phosphates while the maximum increase in this second messenger formation was reduced by 30% with the D100N mutant. Taken together, these results suggest that the CCK2 receptor is coupled to two G proteins and that Phe347 and the cluster of basic residues K333/K334/R335 probably play a key role in Gq protein stimulation leading to inositol phosphate production but not in activation of the G protein coupled to phospholipase A2. These data bring additional support at the molecular level to the existence of different affinity states of CCK2 receptors suggested from the results of binding assays and behavioural studies.  相似文献   
137.
138.
Kashin-Beck disease (KBD) is a severe osteochondral disorder that may be driven by the interaction between genetic and environmental factors. We aimed to improve our understanding of the gut microbiota structure in KBD patients of different grades and the relationship between the gut microbiota and serum metabolites. Fecal and serum samples collected from KBD patients and normal controls (NCs) were used to characterize the gut microbiota using 16S rDNA gene and metabolomic sequencing via liquid chromatography-mass spectrometry (LC/MS). To identify whether gut microbial changes at the species level are associated with the genes or functions of the gut bacteria in the KBD patients, metagenomic sequencing of fecal samples from grade I KBD, grade II KBD and NC subjects was performed. The KBD group was characterized by elevated levels of Fusobacteria and Bacteroidetes. A total of 56 genera were identified to be significantly differentially abundant between the two groups. The genera Alloprevotella, Robinsoniella, Megamonas, and Escherichia_Shigella were more abundant in the KBD group. Consistent with the 16S rDNA analysis at the genus level, most of the differentially abundant species in KBD subjects belonged to the genus Prevotella according to metagenomic sequencing. Serum metabolomic analysis identified some differentially abundant metabolites among the grade I and II KBD and NC groups that were involved in lipid metabolism metabolic networks, such as that for unsaturated fatty acids and glycerophospholipids. Furthermore, we found that these differences in metabolite levels were associated with altered abundances of specific species. Our study provides a comprehensive landscape of the gut microbiota and metabolites in KBD patients and provides substantial evidence of a novel interplay between the gut microbiome and metabolome in KBD pathogenesis.Subject terms: Metagenomics, Metabolomics  相似文献   
139.
We previously identified functional N-methyl-D-aspartate (NMDA) glutamate receptors in mature osteoclasts and demonstrated that they are involved in bone resorption in vitro. In the present work, we studied the expression of NMDA receptors (NMDAR) by osteoclast precursors and their role in osteoclastogenesis using two in vitro models, the murine myelomonocytic RAW 264.7 cell line and mouse bone marrow cells, both of which differentiate into osteoclasts in the presence of macrophage colony-stimulating factor (M-CSF) and Rank ligand (RankL). Using RT-PCR analysis with specific probes, we showed that RAW 264.7 cells and mouse bone marrow cells express mRNA of NMDAR subunits NMDA receptor 1 (NR1) and NMDA receptor 2 (NR2) A, B, and D. These subunits are expressed all along the differentiation sequence from undifferentiated precursors to mature resorbing osteoclasts. Semi-quantitative PCR analysis showed no regulation of the expression of these subunits during the differentiation process. Two specific non competitive antagonists of NMDAR, MK801 and DEP, dose-dependently inhibited osteoclast formation in both models, indicating that osteoclastogenesis requires the activation of NMDAR expressed by osteoclast precursors. MK801 had no effect when added only during the first 2 days of culture, suggesting that NMDAR are rather involved in the late stages of osteoclast formation. Finally, we demonstrated using Western-blotting and immunofluorescence that activation of NMDAR in RAW 264.7 cells by specific agonists induces nuclear translocation of NF-kappa B, a factor required for osteoclast formation. Altogether, our results indicate that osteoclast precursors express NMDAR that are involved in the osteoclast differentiation process through activation of the NF-kappa B pathway.  相似文献   
140.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号