全文获取类型
收费全文 | 232篇 |
免费 | 15篇 |
专业分类
247篇 |
出版年
2023年 | 2篇 |
2022年 | 2篇 |
2021年 | 9篇 |
2020年 | 6篇 |
2019年 | 3篇 |
2018年 | 5篇 |
2017年 | 8篇 |
2016年 | 10篇 |
2015年 | 7篇 |
2014年 | 12篇 |
2013年 | 8篇 |
2012年 | 23篇 |
2011年 | 16篇 |
2010年 | 13篇 |
2009年 | 19篇 |
2008年 | 12篇 |
2007年 | 9篇 |
2006年 | 14篇 |
2005年 | 7篇 |
2004年 | 12篇 |
2003年 | 11篇 |
2002年 | 15篇 |
2001年 | 1篇 |
2000年 | 2篇 |
1999年 | 5篇 |
1998年 | 2篇 |
1997年 | 3篇 |
1994年 | 2篇 |
1992年 | 2篇 |
1989年 | 1篇 |
1987年 | 3篇 |
1986年 | 1篇 |
1982年 | 1篇 |
1980年 | 1篇 |
排序方式: 共有247条查询结果,搜索用时 15 毫秒
1.
Rebecca Pastrana-Mena Rhoel R. Dinglasan Blandine Franke-Fayard Joel Vega-Rodr��guez Mariela Fuentes-Caraballo Abel Baerga-Ortiz Isabelle Coppens Marcelo Jacobs-Lorena Chris J. Janse Adelfa E. Serrano 《The Journal of biological chemistry》2010,285(35):27045-27056
Malaria parasites contain a complete glutathione (GSH) redox system, and several enzymes of this system are considered potential targets for antimalarial drugs. Through generation of a γ-glutamylcysteine synthetase (γ-GCS)-null mutant of the rodent parasite Plasmodium berghei, we previously showed that de novo GSH synthesis is not critical for blood stage multiplication but is essential for oocyst development. In this study, phenotype analyses of mutant parasites lacking expression of glutathione reductase (GR) confirmed that GSH metabolism is critical for the mosquito oocyst stage. Similar to what was found for γ-GCS, GR is not essential for blood stage growth. GR-null parasites showed the same sensitivity to methylene blue and eosin B as wild type parasites, demonstrating that these compounds target molecules other than GR in Plasmodium. Attempts to generate parasites lacking both GR and γ-GCS by simultaneous disruption of gr and γ-gcs were unsuccessful. This demonstrates that the maintenance of total GSH levels required for blood stage survival is dependent on either de novo GSH synthesis or glutathione disulfide (GSSG) reduction by Plasmodium GR. Our studies provide new insights into the role of the GSH system in malaria parasites with implications for the development of drugs targeting GSH metabolism. 相似文献
2.
Vélayoudom-Céphise Fritz-Line Rajaobelina Kalina Helmer Catherine Nov Sovanndany Pupier Emilie Blanco Laurence Hugo Marie Farges Blandine Astrugue Cyril Gin Henri Rigalleau Vincent 《Cardiovascular diabetology》2016,15(1):1-9
Type 1 diabetes is associated with increased cardiovascular disease (CVD). Decreased endothelial progenitor cells (EPCs) number plays a pivotal role in reduced endothelial repair and development of CVD. We aimed to determine if cardioprotective effect of metformin is mediated by increasing circulating endothelial progenitor cells (cEPCs), pro-angiogenic cells (PACs) and decreasing circulating endothelial cells (cECs) count whilst maintaining unchanged glycemic control. This study was an open label and parallel standard treatment study. Twenty-three type 1 diabetes patients without overt CVD were treated with metformin for 8 weeks (treatment group-TG). They were matched with nine type 1 diabetes patients on standard treatment (SG) and 23 age- and sex-matched healthy volunteers (HC). Insulin dose was adjusted to keep unchanged glycaemic control. cEPCs and cECs counts were determined by flow cytometry using surface markers CD45dimCD34+VEGFR-2+ and CD45dimCD133−CD34+CD144+ respectively. Peripheral blood mononuclear cells were cultured to assess changes in PACs number, function and colony forming units (CFU-Hill’s colonies). At baseline TG had lower cEPCs, PACs, CFU-Hills’ colonies and PACs adhesion versus HC (p < 0.001-all variables) and higher cECs versus HC (p = 0.03). Metformin improved cEPCs, PACs, CFU-Hill’s colonies number, cECs and PACs adhesion (p < 0.05-all variables) to levels seen in HC whilst HbA1c (one-way ANOVA p = 0.78) and glucose variability (average glucose, blood glucose standard deviation, mean amplitude of glycaemic excursion, continuous overall net glycaemic action and area under curve) remained unchanged. No changes were seen in any variables in SG. There was an inverse correlation between CFU-Hill’s colonies with cECs. Metformin has potential cardio-protective effect through improving cEPCs, CFU-Hill’s colonies, cECs, PACs count and function independently of hypoglycaemic effect. This finding needs to be confirmed by long term cardiovascular outcome studies in type 1 diabetes.
Trial registration ISRCTN26092132 相似文献
3.
Emilie Martinez Nicolas Gérard Maira M. Garcia Andrzej Mazur Rosa-Maria Guéant-Rodriguez Blandine Comte Jean-Louis Guéant Patrick Brachet 《The Journal of nutritional biochemistry》2013,24(7):1241-1250
Methyl donor (MD: folate, vitamin B12 and choline) deficiency causes hyperhomocysteinemia, a risk factor for cardiovascular diseases. However, the mechanisms of the association between MD deficiency, hyperhomocysteinemia, and cardiomyopathy remain unclear. Therefore, we performed a proteomic analysis of myocardium of pups from rat dams fed a MD-depleted diet to understand the impact of MD deficiency on heart at the protein level. Two-dimension gel electrophoresis and mass spectrometry-based analyses allowed us to identify 39 proteins with significantly altered abundance in MD-deficient myocardium. Ingenuity Pathway Analysis showed that 87% of them fitted to a single protein network associated with developmental disorder, cellular compromise and lipid metabolism. Concurrently increased protein carbonylation, the major oxidative post-translational protein modification, could contribute to the decreased abundance of many myocardial proteins after MD deficiency. To decipher the effect of MD deficiency on the abundance of specific proteins identified in vivo, we developed an in vitro model using the cardiomyoblast cell line H9c2. After a 4-day exposure to a MD-deprived (vs. complete) medium, cells were deficient of folate and vitamin B12, and released abnormal amounts of homocysteine. Western blot analyses of pup myocardium and H9c2 cells yielded similar findings for several proteins. Of specific interest is the result showing increased and decreased abundances of prohibitin and α-crystallin B, respectively, which underlines mitochondrial injury and endoplasmic reticulum stress within MD deficiency. The in vitro findings validate the MD-deficient H9c2 cells as a relevant model for studying mechanisms of the early metabolic changes occurring in cardiac cells after MD deprivation. 相似文献
4.
Ivo H. J. Ploemen Miguel Prudêncio Bruno G. Douradinha Jai Ramesar Jannik Fonager Geert-Jan van Gemert Adrian J. F. Luty Cornelus C. Hermsen Robert W. Sauerwein Fernanda G. Baptista Maria M. Mota Andrew P. Waters Ivo Que Clemens W. G. M. Lowik Shahid M. Khan Chris J. Janse Blandine M. D. Franke-Fayard 《PloS one》2009,4(11)
The quantitative analysis of Plasmodium development in the liver in laboratory animals in cultured cells is hampered by low parasite infection rates and the complicated methods required to monitor intracellular development. As a consequence, this important phase of the parasite''s life cycle has been poorly studied compared to blood stages, for example in screening anti-malarial drugs. Here we report the use of a transgenic P. berghei parasite, PbGFP-Luccon, expressing the bioluminescent reporter protein luciferase to visualize and quantify parasite development in liver cells both in culture and in live mice using real-time luminescence imaging. The reporter-parasite based quantification in cultured hepatocytes by real-time imaging or using a microplate reader correlates very well with established quantitative RT-PCR methods. For the first time the liver stage of Plasmodium is visualized in whole bodies of live mice and we were able to discriminate as few as 1–5 infected hepatocytes per liver in mice using 2D-imaging and to identify individual infected hepatocytes by 3D-imaging. The analysis of liver infections by whole body imaging shows a good correlation with quantitative RT-PCR analysis of extracted livers. The luminescence-based analysis of the effects of various drugs on in vitro hepatocyte infection shows that this method can effectively be used for in vitro screening of compounds targeting Plasmodium liver stages. Furthermore, by analysing the effect of primaquine and tafenoquine in vivo we demonstrate the applicability of real time imaging to assess parasite drug sensitivity in the liver. The simplicity and speed of quantitative analysis of liver-stage development by real-time imaging compared to the PCR methodologies, as well as the possibility to analyse liver development in live mice without surgery, opens up new possibilities for research on Plasmodium liver infections and for validating the effect of drugs and vaccines on the liver stage of Plasmodium. 相似文献
5.
Akendengue B Roblot F Loiseau PM Bories C Ngou-Milama E Laurens A Hocquemiller R 《Phytochemistry》2002,59(8):885-888
Bioguided-fractionation of a CH(2)Cl(2) extract of the stems of Uvaria klaineana (Annonaceae) led to isolation of klaivanolide, a novel bisunsaturated 7-membered lactone (5-acetoxy-7-benzoyloxymethyl-7H-oxepin-2-one), together with benzyl benzoate. Klaivanolide showed potent in vitro antileishmanial activity against both sensitive and amphotericin B-resistant promastigote forms of Leishmania donovani with IC(50) values of 1.75 and 3.12 microM, respectively. The compound also showed in vitro trypanocidal activity against trypomastigote forms of Trypanosoma brucei brucei GVR 35. Its structure was established by 1D and 2D NMR and other spectroscopic techniques. 相似文献
6.
Maternal thyroid hormones (THs) have been proven crucial for embryonic development in humans, but their influence within the natural variation on wild animals remains unknown. So far the only two studies that experimentally investigated the potential fitness consequences of maternal THs in birds found inconsistent results. More studies are thus required to assess the general effects of maternal THs and their influences on more behavioral and physiological parameters. In this study, we experimentally elevated yolk TH content in a wild migratory passerine species, the collared flycatcher Ficedula albicollis, to investigate the effects on hatching success, nestling growth and oxidative stress. We found that TH‐injected eggs had a higher hatching success, and the nestlings hatched from TH‐injected eggs were heavier and larger than control nestlings, but only during the early postnatal period. These differences vanished by fledging. Nestlings from TH‐injected eggs exhibited lower activity of the glutathione‐s‐transferase, a major antioxidant enzyme, than control nestlings at day 12, a few days before fledging, but they did not differ in oxidative damage and overall intracellular oxidative state. These results suggest that the early growth‐enhancing effects incurred no observable oxidative stress. We hypothesize that such a transient growth‐enhancing effect might be adaptive in advancing the development and maturation of the offspring so they are well‐prepared in time for the upcoming migration. Further studies investigating whether such advancing effects can influence long‐term fitness, will be more than valuable. 相似文献
7.
Deroche Luc Buyck Julien Cateau Estelle Rammaert Blandine Marchand Sandrine Brunet Kévin 《Mycopathologia》2022,187(4):413-415
Mycopathologia - Kazachstania bovina is a yeast species from the K. telluris complex that has been recently involved in bloodstream infections. While yeast genomes from this complex have already... 相似文献
8.
Cutting edge: a naturally occurring mutation in CD1e impairs lipid antigen presentation 总被引:1,自引:0,他引:1
Tourne S Maitre B Collmann A Layre E Mariotti S Signorino-Gelo F Loch C Salamero J Gilleron M Angénieux C Cazenave JP Mori L Hanau D Puzo G De Libero G de la Salle H 《Journal of immunology (Baltimore, Md. : 1950)》2008,180(6):3642-3646
The human CD1a-d proteins are plasma membrane molecules involved in the presentation of lipid Ags to T cells. In contrast, CD1e is an intracellular protein present in a soluble form in late endosomes or lysosomes and is essential for the processing of complex glycolipid Ags such as hexamannosylated phosphatidyl-myo-inositol, PIM(6). CD1e is formed by the association of beta(2)-microglobulin with an alpha-chain encoded by a polymorphic gene. We report here that one variant of CD1e with a proline at position 194, encoded by allele 4, does not assist PIM(6) presentation to CD1b-restricted specific T cells. The immunological incompetence of this CD1e variant is mainly due to inefficient assembly and poor transport of this molecule to late endosomal compartments. Although the allele 4 of CD1E is not frequent in the population, our findings suggest that homozygous individuals might display an altered immune response to complex glycolipid Ags. 相似文献
9.
Kedjouar B de Médina P Oulad-Abdelghani M Payré B Silvente-Poirot S Favre G Faye JC Poirot M 《The Journal of biological chemistry》2004,279(32):34048-34061
Tamoxifen is a selective estrogen receptor modulator widely used for the prophylactic treatment of breast cancer. In addition to the estrogen receptor (ER), tamoxifen binds with high affinity to the microsomal antiestrogen binding site (AEBS), which is involved in ER-independent effects of tamoxifen. In the present study, we investigate the modulation of the biosynthesis of cholesterol in tumor cell lines by AEBS ligands. As a consequence of the treatment with the antitumoral drugs tamoxifen or PBPE, a selective AEBS ligand, we show that tumor cells produced a significant concentration- and time-dependent accumulation of cholesterol precursors. Sterols have been purified by HPLC and gas chromatography, and their chemical structures determined by mass spectrometric analysis. The major metabolites identified were 5alpha-cholest-8-en-3beta-ol for tamoxifen treatment and 5alpha-cholest-8-en-3beta-ol and cholesta-5,7-dien-3beta-ol, for PBPE treatment, suggesting that these AEBS ligands affect at least two enzymatic steps: the 3beta-hydroxysterol-Delta8-Delta7-isomerase and the 3beta-hydroxysterol-Delta7-reductase. Steroidal antiestrogens such as ICI 182,780 and RU 58,668 did not affect these enzymatic steps, because they do not bind to the AEBS. Transient co-expression of human 3beta-hydroxysterol-Delta8-Delta7-isomerase and 3beta-hydroxysterol-Delta7-reductase and immunoprecipitation experiments showed that both enzymes were required to reconstitute the AEBS in mammalian cells. Altogether, these data provide strong evidence that the AEBS is a hetero-oligomeric complex including 3beta-hydroxysterol-Delta8-Delta7-isomerase and the 3beta-hydroxysterol-Delta7-reductase as subunits that are necessary and sufficient for tamoxifen binding in mammary cells. Furthermore, because selective AEBS ligands are antitumoral compounds, these data suggest a link between cholesterol metabolism at a post-lanosterol step and tumor growth control. These data afford both the identification of the AEBS and give new insight into a novel molecular mechanism of action for drugs of clinical value. 相似文献
10.