首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   203篇
  免费   24篇
  2022年   2篇
  2021年   8篇
  2019年   1篇
  2018年   1篇
  2017年   3篇
  2016年   5篇
  2015年   10篇
  2014年   10篇
  2013年   12篇
  2012年   10篇
  2011年   17篇
  2010年   12篇
  2009年   18篇
  2008年   10篇
  2007年   14篇
  2006年   11篇
  2005年   8篇
  2004年   9篇
  2003年   5篇
  2002年   10篇
  2001年   7篇
  2000年   2篇
  1999年   5篇
  1998年   4篇
  1997年   5篇
  1995年   1篇
  1991年   1篇
  1990年   2篇
  1989年   6篇
  1988年   2篇
  1987年   3篇
  1986年   2篇
  1985年   2篇
  1984年   4篇
  1979年   1篇
  1978年   1篇
  1969年   1篇
  1966年   2篇
排序方式: 共有227条查询结果,搜索用时 31 毫秒
61.
In the heterogeneous nuclear ribonucleoprotein (hnRNP) A1 pre-mRNA, different regions in the introns flanking alternative exon 7B have been implicated in the production of the A1 and A1B mRNA splice isoforms. Among these, the CE1a and CE4 elements, located downstream of common exon 7 and alternative exon 7B, respectively, are bound by hnRNP A1 to promote skipping of exon 7B in vivo and distal 5' splice site selection in vitro. Here, we report that CE1a is flanked by an additional high affinity A1 binding site (CE1d). In a manner similar to CE1a, CE1d affects 5' splice site selection in vitro. Consistent with a role for hnRNP A1 in the activity of CE1d, a mutation that abrogates A1 binding abolishes distal 5' splice site activation. Moreover, the ability of CE1d to stimulate distal 5' splice site usage is lost in an HeLa extract depleted of hnRNP A/B proteins, and the addition of recombinant A1 restores the activity of CE1d. Notably, distal 5' splice site selection mediated by A1 binding sites is not compromised in an extract prepared from mouse cells that are severely deficient in hnRNP A1 proteins. In this case, we show that hnRNP A2 compensates for the A1 deficiency. Further studies with the CE4 element reveal that it also consists of two distinct portions (CE4m and CE4p), each one capable of promoting distal 5' splice site use in an hnRNP A1-dependent manner. The presence of multiple A1/A2 binding sites downstream of common exon 7 and alternative exon 7B probably plays an important role in maximizing the activity of hnRNP A1/A2 proteins.  相似文献   
62.
Chemical and morphological changes of incipient to advanced stages of palo podrido, an extensively delignified wood, and other types of white rot decay found in the temperate forests of southern Chile were investigated. Palo podrido is a general term for white rot decay that is either selective or nonselective for the removal of lignin, whereas palo blanco describes the white decayed wood that has advanced stages of delignification. Selective delignification occurs mainly in trunks of Eucryphia cordifolia and Nothofagus dombeyi, which have the lowest lignin content and whose lignins have the largest amount of β-aryl ether bonds and the highest syringyl/guaiacyl ratio of all the native woods included in this study. A Ganoderma species was the main white rot fungus associated with the decay. The structural changes in lignin during the white rot degradation were examined by thioacidolysis, which revealed that the β-aryl ether-linked syringyl units were more specifically degraded than the guaiacyl ones, particularly in the case of selective delignification. Ultrastructural studies showed that the delignification process was diffuse throughout the cell wall. Lignin was first removed from the secondary wall nearest the lumen and then throughout the secondary wall toward the middle lamella. The middle lamella and cell corners were the last areas to be degraded. Black manganese deposits were found in some, but not all, selectively delignified samples. In advanced stages of delignification, almost pure cellulose could be found, although with a reduced degree of polymerization. Cellulolytic enzymes appeared to be responsible for depolymerization. A high brightness and an easy refining capacity were found in an unbleached pulp made from selectively delignified N. dombeyi wood. Its low viscosity, however, resulted in poor resistance properties of the pulp. The last stage of degradation (i.e., decomposition of cellulose-rich secondary wall layers) resulted in a gelatinlike substance. Ultrastructural and chemical analyses of this substance showed the matrix to have no microfibrillar structure characteristic of woody cell walls but to still be rich in glucan.  相似文献   
63.
Comparative Studies of Delignification Caused by Ganoderma Species   总被引:2,自引:1,他引:1       下载免费PDF全文
Isolates of six species of Ganoderma in the G. lucidum complex were evaluated for their ability to decay wood of Quercus hypoleucoides A. Camus and Abies concolor (Gord. and Glend.) Lindl. ex. Hildebr. by using in vitro agar block decay tests. Morphological, ultrastructural, and chemical studies of decayed wood were used to determine the extent of delignification or simultaneous decay caused by each species of Ganoderma. All species decayed both white fir and oak wood; however, less percent weight loss (%WL) occurred in white fir than oak. In white fir, isolates of two undescribed Ganoderma species (RLG16161, RLG16162, JEA615, and JEA625) caused significantly higher%WL (21 to 26%) than that in G. colossum, G. oregonense, G. meredithiae, and G. zonatum (10 to 16%). Only Ganoderma sp. isolates JEA615 and JEA625 caused delignification, with JEA615 causing a lignin-to-glucose gram loss ratio of 1.6:1. Morphological and ultrastructural studies confirmed delignification by this fungus and showed that some delignification had occurred by all of the species, although areas of delignification were limited to small regions adjacent to simultaneously decayed cells. In oak, G. colossum caused significantly less%WL (22 to 35%) than the other species (38 to 52%). All of the species, except G. meredithiae, caused delignification with lignin-to-glucose gram loss ratios ranging from 1.4 to 4.9:1. Extensive delignification by isolates of G. colossum and G. oregonense was observed; moderate delignification was caused by the other species. Ganoderma meredithiae caused a simultaneous decay, with only small localized regions of cells delignified, while delignification by G. zonatum was irregular, with specific zones within the cell wall delignified. The thermophilic and chlamydosporic G. colossum has the capacity to cause extensive delignification and appears ideally suited for use in lignin degradation studies and biotechnological applications of lignin-degrading fungi.  相似文献   
64.
65.
Small DNA tumor viruses typically encode proteins that either inactivate or degrade p53. Human adenoviruses encode products, including E4orf6 and E1B55K, that do both. Each independently binds to p53 and inhibits its ability to activate gene expression; however, in combination they induce p53 degradation by the ubiquitin pathway. We have shown previously that p53 degradation relies on interactions of E4orf6 with the cellular proteins Cul5, Rbx1, and elongins B and C to form an E3 ligase similar to the SCF and VBC complexes. Here we show that, like other elongin BC-interacting proteins, including elongin A, von Hippel-Lindau protein, and Muf1, the interaction of E4orf6 is mediated by the BC-box motif; however, E4orf6 uniquely utilizes two BC-box motifs for degradation of p53 and another target, Mre11. In addition, our data suggest that the interaction of E1B55K with E4orf6 depends on the ability of E4orf6 to form the E3 ligase complex and that such complex formation may be required for all E4orf6-E1B55K functions.  相似文献   
66.
Faithful propagation of eukaryotic chromosomes usually requires that no DNA segment be replicated more than once during one cell cycle. Cyclin-dependent kinases (Cdks) are critical for the re-replication controls that inhibit the activities of components of the pre-replication complexes (pre-RCs) following origin activation. The origin recognition complex (ORC) initiates the assembly of pre-RCs at origins of replication and Cdk phosphorylation of ORC is important for the prevention of re-initiation. Here we show that Drosophila melanogaster ORC (DmORC) is phosphorylated in vivo and is a substrate for Cdks in vitro. Cdk phosphorylation of DmORC subunits DmOrc1p and DmOrc2p inhibits the intrinsic ATPase activity of DmORC without affecting ATP binding to DmOrc1p. Moreover, Cdk phosphorylation inhibits the ATP-dependent DNA-binding activity of DmORC in vitro, thus identifying a novel determinant for DmORC-DNA interaction. DmORC is a substrate for both Cdk2 x cyclin E and Cdk1 x cyclin B in vitro. Such phosphorylation of DmORC by Cdk2 x cyclin E, but not by Cdk1 x cyclin B, requires an "RXL" motif in DmOrc1p. We also identify casein kinase 2 (CK2) as a kinase activity in embryonic extracts targeting DmORC for modification. CK2 phosphorylation does not affect ATP hydrolysis by DmORC but modulates the ATP-dependent DNA-binding activity of DmORC. These results suggest molecular mechanisms by which Cdks may inhibit ORC function as part of re-replication control and show that DmORC activity may be modulated in response to phosphorylation by multiple kinases.  相似文献   
67.

Background  

Calcineurin (CaN) is an important serine-threonine phosphatase (PP2B), which plays a crucial role in calcium-calmodulin mediated signal transduction events. Calcineurin has been implicated in pathogenesis of various diseases cardiac hypertrophy, diabetic neuropathy and Alzheimer's, however its role in neoplasia remains unclear.  相似文献   
68.
69.
Dimethyl sulfoxide affects the selection of splice sites   总被引:4,自引:0,他引:4  
Depending on the cell lines and cell types, dimethyl sulfoxide (Me2SO) can induce or block cell differentiation and apoptosis. Although Me2SO treatment alters many levels of gene expression, the molecular processes that are directly affected by Me2SO have not been clearly identified. Here, we report that Me2SO affects splice site selection on model pre-mRNAs incubated in a nuclear extract prepared from HeLa cells. A shift toward the proximal pair of splice sites was observed on pre-mRNAs carrying competing 5'-splice sites or competing 3'-splice sites. Because the activity of recombinant hnRNP A1 protein was similar when added to extracts containing or lacking Me2SO, the activity of endogenous A1 proteins is probably not affected by Me2SO. Notably, in a manner reminiscent of SR proteins, Me2SO activated splicing in a HeLa S100 extract. Moreover, the activity of recombinant SR proteins in splice site selection in vitro was improved by Me2SO. Polar solvents like DMF and formamide similarly modulated splice site selection in vitro but formamide did not activate a HeLa S100 extract. We propose that Me2SO improves ionic interactions between splicing factors that contain RS-domains. The direct impact of Me2SO on alternative splicing may explain, at least in part, the different and sometimes opposite effects of Me2SO on cell differentiation and apoptosis.  相似文献   
70.
The typical output of many computational methods to identify binding sites is a long list of motifs containing some real motifs (those most likely to correspond to the actual binding sites) along with a large number of random variations of these. We present a statistical method to separate real motifs from their artifacts. This produces a short list of high quality motifs that is sufficient to explain the over-representation of all motifs in the given sequences. Using synthetic data sets, we show that the output of our method is very accurate. On various sets of upstream sequences in S. cerevisiae, our program identifies several known binding sites, as well as a number of significant novel motifs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号