首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2331篇
  免费   249篇
  2022年   21篇
  2021年   51篇
  2020年   24篇
  2019年   32篇
  2018年   37篇
  2017年   39篇
  2016年   47篇
  2015年   104篇
  2014年   79篇
  2013年   90篇
  2012年   120篇
  2011年   142篇
  2010年   82篇
  2009年   89篇
  2008年   109篇
  2007年   82篇
  2006年   75篇
  2005年   77篇
  2004年   89篇
  2003年   91篇
  2002年   63篇
  2001年   45篇
  2000年   60篇
  1999年   57篇
  1998年   26篇
  1997年   27篇
  1996年   30篇
  1995年   24篇
  1994年   25篇
  1993年   21篇
  1992年   48篇
  1991年   28篇
  1990年   37篇
  1989年   38篇
  1988年   35篇
  1987年   44篇
  1986年   34篇
  1985年   19篇
  1984年   20篇
  1983年   40篇
  1982年   26篇
  1981年   28篇
  1980年   20篇
  1979年   22篇
  1978年   22篇
  1977年   19篇
  1974年   17篇
  1973年   27篇
  1972年   20篇
  1970年   18篇
排序方式: 共有2580条查询结果,搜索用时 62 毫秒
901.
Accurate knowledge of biomechanical characteristics of tissues is essential for developing realistic computer-based surgical simulators incorporating haptic feedback, as well as for the design of surgical robots and tools. As simulation technologies continue to be capable of modeling more complex behavior, an in vivo tissue property database is needed. Most past and current biomechanical research is focused on soft and hard anatomical structures that are subject to physiological loading, testing the organs in situ. Internal organs are different in that respect since they are not subject to extensive loads as part of their regular physiological function. However, during surgery, a different set of loading conditions are imposed on these organs as a result of the interaction with the surgical tools. Following previous research studying the kinematics and dynamics of tool/tissue interaction in real surgical procedures, the focus of the current study was to obtain the structural biomechanical properties (engineering stress-strain and stress relaxation) of seven abdominal organs, including bladder, gallbladder, large and small intestines, liver, spleen, and stomach, using a porcine animal model. The organs were tested in vivo, in situ, and ex corpus (the latter two conditions being postmortem) under cyclical and step strain compressions using a motorized endoscopic grasper and a universal-testing machine. The tissues were tested with the same loading conditions commonly applied by surgeons during minimally invasive surgical procedures. Phenomenological models were developed for the various organs, testing conditions, and experimental devices. A property database-unique to the literature-has been created that contains the average elastic and relaxation model parameters measured for these tissues in vivo and postmortem. The results quantitatively indicate the significant differences between tissue properties measured in vivo and postmortem. A quantitative understanding of how the unconditioned tissue properties and model parameters are influenced by time postmortem and loading condition has been obtained. The results provide the material property foundations for developing science-based haptic surgical simulators, as well as surgical tools for manual and robotic systems.  相似文献   
902.
Successful pathogens have evolved strategies to interfere with host immune systems. For example, the ubiquitous plant pathogen Pseudomonas syringae injects two sequence-distinct effectors, AvrPto and AvrPtoB, to intercept convergent innate immune responses stimulated by multiple microbe-associated molecular patterns (MAMPs). However, the direct host targets and precise molecular mechanisms of bacterial effectors remain largely obscure. We show that AvrPto and AvrPtoB bind the Arabidopsis receptor-like kinase BAK1, a shared signaling partner of both the flagellin receptor FLS2 and the brassinosteroid receptor BRI1. This targeting interferes with ligand-dependent association of FLS2 with BAK1 during infection. It also impedes BAK1-dependent host immune responses to diverse other MAMPs and brassinosteroid signaling. Significantly, the structural basis of AvrPto-BAK1 interaction appears to be distinct from AvrPto-Pto association required for effector-triggered immunity. These findings uncover a unique strategy of bacterial pathogenesis where virulence effectors block signal transmission through a key common component of multiple MAMP-receptor complexes.  相似文献   
903.
A dramatic expansion of road building is underway in the Congo Basin fuelled by private enterprise, international aid, and government aspirations. Among the great wilderness areas on earth, the Congo Basin is outstanding for its high biodiversity, particularly mobile megafauna including forest elephants (Loxodonta africana cyclotis). The abundance of many mammal species in the Basin increases with distance from roads due to hunting pressure, but the impacts of road proliferation on the movements of individuals are unknown. We investigated the ranging behaviour of forest elephants in relation to roads and roadless wilderness by fitting GPS telemetry collars onto a sample of 28 forest elephants living in six priority conservation areas. We show that the size of roadless wilderness is a strong determinant of home range size in this species. Though our study sites included the largest wilderness areas in central African forests, none of 4 home range metrics we calculated, including core area, tended toward an asymptote with increasing wilderness size, suggesting that uninhibited ranging in forest elephants no longer exists. Furthermore we show that roads outside protected areas which are not protected from hunting are a formidable barrier to movement while roads inside protected areas are not. Only 1 elephant from our sample crossed an unprotected road. During crossings her mean speed increased 14-fold compared to normal movements. Forest elephants are increasingly confined and constrained by roads across the Congo Basin which is reducing effective habitat availability and isolating populations, significantly threatening long term conservation efforts. If the current road development trajectory continues, forest wildernesses and the forest elephants they contain will collapse.  相似文献   
904.

Background

The genetic basis of haemorrhagic stroke has proved difficult to unravel, partly hampered by the small numbers of subjects in any single study. A meta-analysis of all candidate gene association studies of haemorrhagic stroke (including ruptured subarachnoid haemorrhage and amyloid angiopathy-related haemorrhage) was performed, allowing more reliable estimates of risk.

Methods

A systematic review and meta-analysis of all genetic studies in haemorrhagic stroke was conducted. Electronic databases were searched until and including March 2007 for any candidate gene in haemorrhagic stroke. Odds ratio (OR) and 95% confidence intervals (CI) were determined for each gene disease association using fixed and random effect models.

Results

Our meta-analyses included 6,359 cases and 13,805 controls derived from 55 case-control studies, which included 12 genes (13 polymorphisms). Statistically significant associations with haemorrhagic stroke were identified for those homozygous for the ACE/I allele (OR, 1.48; 95% CI, 1.20–1.83; p = 0.0003) and for the 5G allele in the SERPINE1 4G/5G polymorphism (OR, 1.42; 95% CI, 1.03–1.96; p = 0.03). In addition, both &b.epsi;2 and &b.epsi;4 alleles of APOE were significantly associated with lobar haemorrhage (OR, 1.81; 95% CI, 1.26–2.62; p = 0.002 and OR, 1.49; 95% 1.08–2.05; p = 0.01 respectively). Furthermore, a significant protective association against haemorrhagic stroke was found for the factor V Leiden mutation (OR, 0.30; 95% CI, 0.10–0.87; p = 0.03).

Conclusion

Our data suggests a genetic contribution to some types of haemorrhagic stroke, with no overall responsible single gene but rather supporting a polygenic aetiology . However, the evidence base is smaller compared to ischaemic stroke. Importantly, for several alleles previously found to be associated with protection from ischaemic stroke, there was a trend towards an increased risk of haemorrhagic stroke.  相似文献   
905.
Sturgeon diet and feeding habitats are notoriously difficult to document. We mapped the locations of feeding pits in Willapa Bay, Washington, to characterize estuarine habitats used by sub-adult and adult sturgeon for infaunal feeding. Monthly summer surveys of intertidal plots revealed that feeding pit density was highest in July and August, when sturgeon occupy Willapa Bay. The ephemeral nature of feeding pits and high daily densities (> 1000 pits/ha) indicated intensive sturgeon feeding over unvegetated littoral mud flats during high tide. Feeding pit density was lowest in subtidal areas, over sand (grain sizes primarily >63 μ), and at sites with dense stands of non-indigenous seagrass, Zostera japonica. Sub-adult and adult sturgeon apparently used these habitats significantly less than would be predicted based on their availability. Feeding pit formation was negatively correlated with Z. japonica shoot dry weight and positively correlated with the abundance of thalassinid shrimp burrows. Experimental removal of Z. japonica resulted in increased sturgeon feeding, but experimental removal of burrowing shrimp did not significantly affect feeding pit formation. Aquaculture activities that harden substrate and proliferation of invasive seagrass both appear to produce estuarine substrates that are unsuitable for benthic feeding by sturgeon.  相似文献   
906.

Key message

Genetic diversity in quantitative loci associated with plant traits used by insects as cues for host selection can influence oviposition behavior and maternal choice.

Abstract

Host plant selection for oviposition is an important determinant of progeny performance and survival for phytophagous insects. Specific cues from the plant influence insect oviposition behavior; but, to date, no set of host plant quantitative trait loci (QTLs) have been shown to have an effect on behavioral sequences leading to oviposition. Three QTLs in wheat (Triticum aestivum L.) have been identified as influencing resistance to the wheat stem sawfly (WSS) (Cephus cinctus Norton). Wheat near-isogenic lines (NILs) for each of the three QTLs were used to test whether foraging WSS were able to discriminate variation in plant cues resulting from allelic changes. A QTL on chromosome 3B (Qss-msub-3BL) previously associated with stem solidness and larval antibiosis was shown to affect WSS oviposition behavior, host preference, and field infestation. Decreased preference for oviposition was also related to a QTL allele on chromosome 2D (Qwss.msub-2D). A QTL on chromosome 4A (Qwss.msub-4A.1) affected host plant attractiveness to foraging females, but did not change oviposition preference after females landed on the stem. These findings show that oviposition decisions regarding potential plant hosts require WSS females to discriminate signals from the plant associated with allelic variation at host plant quantitative loci. Allele types in a host plant QTL associated with differential survival of immature progeny can affect maternal choices for oviposition. The multidisciplinary approach used here may lead to the identification of plant genes with important community consequences, and may complement the use of antibiosis due to solid stems to control the wheat stem sawfly in agroecosystems.
  相似文献   
907.
Threatened by devil facial tumour disease, the Tasmanian devil (Sarcophilus harrisii), a carnivorous marsupial confined to Tasmania, Australia, is the subject of conservation management under the Save the Tasmanian Devil Program. Conservation actions such as captive breeding and translocation may impact upon parasite ecology, presenting risk of increased disease through stress and impaired immunity, and by exposing hosts to parasites to which they are immunologically naïve. Given the importance of parasites to ecosystem function, it has been argued from a biodiversity perspective that parasites should be conserved in their own right. In this review we describe current knowledge, and limitations in our knowledge, of Tasmanian devil parasites. We then discuss the potential for changes in host–parasite interactions as a result of host-population decline and conservation management, both generally and with examples from the Tasmanian devil. The review closes with a recommendation for a systematic evaluation of parasites in captive and wild devils to aid conservation of this host–parasite system in its entirety.  相似文献   
908.
Papua New Guinean forests (PNG), sequestering up to 3% of global forest carbon, are a focus of climate change mitigation initiatives, yet few field‐based studies have quantified forest biomass and carbon for lowland PNG forest. We provide an estimate for the 10 770 ha Wanang Conservation Area (WCA) to investigate the effect of calculation methodology and choice of allometric equation on estimates of above‐ground live biomass (AGLB) and carbon. We estimated AGLB and carbon from 43 nested plots at the WCA. Our biomass estimate of 292.2 Mg AGLB ha?1 (95% CI 233.4–350.6) and carbon at 137.3 Mg C ha?1 (95% CI 109.8–164.8) is higher than most estimates for PNG but lower than mean global estimates for tropical forest. Calculation method and choice of allometric model do not significantly influence mean biomass estimates; however, the most recently calibrated allometric equation generates estimates 13% higher for lower 95% confidence intervals of mean biomass than previous allometric models – a value often used as a conservative estimate of biomass. Although large trees at WCA (>70 cm diameter at breast height) accounted for 1/5 total biomass, their density was lower than that seen in SE Asian and Australia forests. Lower density of large trees accounts for lower AGLB than in neighbouring forests – as large trees contribute disproportionately to forest biomass. Reduced frequency of larger trees at WCA is explained by the lack of diversity of large dipterocarp species common to neighbouring SE Asian forests and, potentially, higher rates of local disturbance dynamics. PNG is susceptible to the El Niño Southern Oscillation (ENSO) extreme drought events to which large trees are particularly sensitive and, with still over 20% carbon in large trees, differential mortality under increasing ENSO drought stress raises the risk of PNG forest switching from carbon sink to source with reduced long‐term carbon storage capacity.  相似文献   
909.
Macroecological models for predicting species distributions usually only include abiotic environmental conditions as explanatory variables, despite knowledge from community ecology that all species are linked to other species through biotic interactions. This disconnect is largely due to the different spatial scales considered by the two sub‐disciplines: macroecologists study patterns at large extents and coarse resolutions, while community ecologists focus on small extents and fine resolutions. A general framework for including biotic interactions in macroecological models would help bridge this divide, as it would allow for rigorous testing of the role that biotic interactions play in determining species ranges. Here, we present an approach that combines species distribution models with Bayesian networks, which enables the direct and indirect effects of biotic interactions to be modelled as propagating conditional dependencies among species’ presences. We show that including biotic interactions in distribution models for species from a California grassland community results in better range predictions across the western USA. This new approach will be important for improving estimates of species distributions and their dynamics under environmental change.  相似文献   
910.
Aims Hydrogeomorphic processes operating at watershed, process zone and site scales influence the distribution of riparian vegetation. However, most studies examining the relationships between hydrogeomorphic processes and riparian vegetation are conducted at site scales. We quantified the relative importance of watershed, process zone and site geomorphic characteristics for predicting riparian plant community types and plant species abundances in four small mountain watersheds in central Nevada, USA.Methods We mapped riparian vegetation types and identified process zones (based on dominant geomorphic process and valley fill material) within the watersheds. We sampled sites in each combination of vegetation type and process zone (n = 184 sites) and collected data on watershed scale factors, valley and stream geomorphic characteristics and on plant cover of each geomorphic surface. Plant community types were defined by cluster and indicator species analyses of plant cover data, and related to geomorphic variables using ordination analysis (nonmetric multidimensional scaling). Linear mixed effects models were used to predict abundances of indicator species.Important findings Variables describing position in the watershed (elevation, contributing area) that are related to gradients of temperature, moisture and stream discharge were of primary importance in predicting plant community types. Variables describing local geomorphic setting (valley width, stream gradient, channel sediments, geomorphic surface height) were of secondary importance, but accurately described the geomorphic setting of indicator species. The process zone classification did not include position in the watershed or channel characteristics and only predicted plant community types with unique geomorphic settings. In small mountain watersheds, predicting riparian vegetation distribution requires explicit consideration of scale and geomorphic context within and among watersheds in addition to site variables.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号