首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2837篇
  免费   274篇
  国内免费   3篇
  2021年   35篇
  2020年   24篇
  2019年   19篇
  2018年   35篇
  2017年   39篇
  2016年   54篇
  2015年   84篇
  2014年   105篇
  2013年   145篇
  2012年   168篇
  2011年   135篇
  2010年   105篇
  2009年   93篇
  2008年   134篇
  2007年   139篇
  2006年   139篇
  2005年   130篇
  2004年   129篇
  2003年   111篇
  2002年   107篇
  2001年   40篇
  2000年   51篇
  1999年   46篇
  1998年   34篇
  1997年   20篇
  1996年   28篇
  1995年   33篇
  1994年   21篇
  1993年   26篇
  1992年   35篇
  1991年   41篇
  1990年   30篇
  1989年   44篇
  1988年   37篇
  1987年   33篇
  1986年   35篇
  1985年   35篇
  1984年   45篇
  1983年   30篇
  1982年   41篇
  1981年   26篇
  1979年   27篇
  1978年   18篇
  1977年   20篇
  1976年   22篇
  1975年   19篇
  1974年   23篇
  1973年   22篇
  1970年   22篇
  1969年   18篇
排序方式: 共有3114条查询结果,搜索用时 15 毫秒
121.
Soy isoflavones are thought to have a cardioprotective effect that is partly mediated by an inhibitory influence on the oxidation of low density lipoprotein (LDL). However, the aglycone forms investigated in many previous studies do not circulate in appreciable quantities because they are metabolised in the gut and liver. We investigated effects of various isoflavone metabolites, including for the first time the sulphated conjugates formed in the liver and the mucosa of the small intestine, on copper-induced LDL oxidation. The parent aglycones inhibited oxidation, although only 5% as well as quercetin. Metabolism increased or decreased their effectiveness. Equol inhibited 2.65-fold better than its parent compound daidzein and 8-hydroxydaidzein, not previously assessed, was 12.5-fold better than daidzein. However, monosulphated conjugates of genistein, daidzein and equol were much less effective and disulphates completely ineffective. Since almost all isoflavones circulate as conjugates, these data suggest that despite the increased potency produced by some metabolic changes, isoflavones may not be effective antioxidants in vivo unless they are deconjugated again.  相似文献   
122.
A microarray (LungCaGxE), based on Illumina BeadChip technology, was developed for high-resolution genotyping of genes that are candidates for involvement in environmentally driven aspects of lung cancer oncogenesis and/or tumor growth. The iterative array design process illustrates techniques for managing large panels of candidate genes and optimizing marker selection, aided by a new bioinformatics pipeline component, Tagger Batch Assistant. The LungCaGxE platform targets 298 genes and the proximal genetic regions in which they are located, using ∼13,000 DNA single nucleotide polymorphisms (SNPs), which include haplotype linkage markers with a minimum allele frequency of 1% and additional specifically targeted SNPs, for which published reports have indicated functional consequences or associations with lung cancer or other smoking-related diseases. The overall assay conversion rate was 98.9%; 99.0% of markers with a minimum Illumina design score of 0.6 successfully generated allele calls using genomic DNA from a study population of 1873 lung-cancer patients and controls.  相似文献   
123.
Expansion of woody vegetation into areas that were historically grass-dominated is a significant contemporary threat to grasslands, including native tallgrass prairie ecosystems of the Midwestern United States. In tallgrass prairie, much of this woody expansion is concentrated in riparian zones with potential impacts on biogeochemical processes there. Although the effects of woody riparian vegetation on denitrification in both riparian soils and streams have been well studied in naturally wooded ecosystems, less is known about the impacts of woody vegetation encroachment in ecosystems that were historically dominated by herbaceous vegetation. Here, we analyze the effect of afforestation and subsequent woody plant removal on riparian and benthic denitrification. Denitrification rates in riparian soil and selected benthic compartments were measured seasonally in naturally grass-dominated riparian zones, woody encroached riparian zones, and riparian zones with woody vegetation removed in two separate watersheds. Riparian soil denitrification was highly seasonal, with the greatest rates in early spring. Benthic denitrification also exhibited high temporal variability, but no seasonality. Soil denitrification rates were greatest in riparian zones where woody vegetation was removed. Additionally, concentrations of nitrate, carbon, and soil moisture (indicative of potential anoxia) were greatest in wood removal soils. Differences in the presence and abundance of benthic compartments reflected riparian vegetation, and may have indirectly affected denitrification in streams. Riparian soil denitrification increased with soil water content and NO3 ?. Management of tallgrass prairies that includes removal of woody vegetation encroaching on riparian areas may alter biogeochemical cycling by increasing nitrogen removed via denitrification while the restored riparian zones return to a natural grass-dominated state.  相似文献   
124.
Seagrass meadows are in decline globally. Although numerous experimental methods have been implemented to restore meadows, few have been successful in the long term. Poor decisions on the sourcing of transplants from donor sites, including poor genetic integration and/or low genetic diversity, may impact on restoration success. However, despite evidence to suggest a positive association between genetic diversity and ecological resilience, there is usually little or no input from genetic data to inform on the genetic management of ecological restoration. Cockburn Sound has seen a 77% decline in seagrass cover since 1967. A transplant trial was conducted between 2004 and 2008 with sprigs of Posidonia australis being planted into a bare sand area. Survival was monitored annually, and in 2012, we compared genetic diversity in this transplant area with the original donor site. Genetic diversity in the restored meadow was very high and comparable to the donor site, with no genetic differentiation detected. The high level of genetic diversity and choice of site may have played an important role in the success of this restoration trial. The observed natural recruits around the site after establishment of transplants suggest that local restoration efforts may improve seafloor habitat and facilitate natural expansion of the meadow.  相似文献   
125.
126.
The henipaviruses, represented by Hendra (HeV) and Nipah (NiV) viruses are highly pathogenic zoonotic paramyxoviruses with uniquely broad host tropisms responsible for repeated outbreaks in Australia, Southeast Asia, India and Bangladesh. The high morbidity and mortality rates associated with infection and lack of licensed antiviral therapies make the henipaviruses a potential biological threat to humans and livestock. Henipavirus entry is initiated by the attachment of the G envelope glycoprotein to host cell membrane receptors. Previously, henipavirus-neutralizing human monoclonal antibodies (hmAb) have been isolated using the HeV-G glycoprotein and a human naïve antibody library. One cross-reactive and receptor-blocking hmAb (m102.4) was recently demonstrated to be an effective post-exposure therapy in two animal models of NiV and HeV infection, has been used in several people on a compassionate use basis, and is currently in development for use in humans. Here, we report the crystal structure of the complex of HeV-G with m102.3, an m102.4 derivative, and describe NiV and HeV escape mutants. This structure provides detailed insight into the mechanism of HeV and NiV neutralization by m102.4, and serves as a blueprint for further optimization of m102.4 as a therapeutic agent and for the development of entry inhibitors and vaccines.  相似文献   
127.
Habitat fragmentation due to both natural and anthropogenic forces continues to threaten the evolution and maintenance of biological diversity. This is of particular concern in tropical regions that are experiencing elevated rates of habitat loss. Although less well-studied than tropical rain forests, tropical dry forests (TDF) contain an enormous diversity of species and continue to be threatened by anthropogenic activities including grazing and agriculture. However, little is known about the processes that shape genetic connectivity in species inhabiting TDF ecosystems. We adopt a landscape genetic approach to understanding functional connectivity for leaf-toed geckos (Phyllodactylus tuberculosus) at multiple sites near the northernmost limit of this ecosystem at Alamos, Sonora, Mexico. Traditional analyses of population genetics are combined with multivariate GIS-based landscape analyses to test hypotheses on the potential drivers of spatial genetic variation. Moderate levels of within-population diversity and substantial levels of population differentiation are revealed by F ST and D est. Analyses using structure suggest the occurrence of from 2 to 9 genetic clusters depending on the model used. Landscape genetic analysis suggests that forest cover, stream connectivity, undisturbed habitat, slope, and minimum temperature of the coldest period explain more genetic variation than do simple Euclidean distances. Additional landscape genetic studies throughout TDF habitat are required to understand species-specific responses to landscape and climate change and to identify common drivers. We urge researchers interested in using multivariate distance methods to test for, and report, significant correlations among predictor matrices that can impact results, particularly when adopting least-cost path approaches. Further investigation into the use of information theoretic approaches for model selection is also warranted.  相似文献   
128.

Background

The epidemiologic evidence on alcohol consumption and Parkinson’s disease (PD) is equivocal. We prospectively examined total alcohol consumption and consumption of specific types of alcoholic beverage in relation to future risk of PD.

Methods

The study comprised 306,895 participants (180,235 male and 126,660 female) ages 50–71 years in 1995–1996 from the NIH-AARP Diet and Health Study. Consumption of alcoholic beverages in the past 12 months was assessed in 1995–1996. Multivariate odds ratios (OR) and 95% confidence intervals (CI) were obtained from logistic regression models.

Results

A total of 1,113 PD cases diagnosed between 2000 and 2006 were included in the analysis. Total alcohol consumption was not associated with PD. However, the association differed by types of alcoholic beverages. Compared with non-beer drinkers, the multivariate ORs for beer drinkers were 0.79 (95% CI: 0.68, 0.92) for <1 drink/day, 0.73 (95% CI: 0.50, 1.07) for 1–1.99 drinks/day, and 0.86 (95% CI: 0.60, 1.21) for ≥2 drinks/day. For liquor consumption, a monotonic increase in PD risk was suggested: ORs (95% CI) were 1.06 (0.91, 1.23), 1.22 (0.94, 1.58), and 1.35 (1.02, 1.80) for <1, 1–1.99, and ≥2 drinks/day, respectively (P for trend <0.03). Additional analyses among exclusive drinkers of one specific type of alcoholic beverage supported the robustness of these findings. The results for wine consumption were less clear, although a borderline lower PD risk was observed when comparing wine drinkers of 1–1.99 drinks/day with none drinkers (OR = 0.74, 95% CI: 0.53, 1.02).

Conclusions

Our results suggest that beer and liquor consumption may have opposite associations with PD: low to moderate beer consumption with lower PD risk and greater liquor consumption with higher risk. These findings and potential underlying mechanisms warrant further investigations.  相似文献   
129.

Background

There is a large body of literature on competitive interactions among plants, but many studies have only focused on above-ground interactions and little is known about root–root dynamics between interacting plants. The perspective on possible mechanisms that explain the outcome of root–root interactions has recently been extended to include non-resource-driven mechanisms (as well as resource-driven mechanisms) of root competition and positive interactions such as facilitation. These approaches have often suffered from being static, partly due to the lack of appropriate methodologies for in-situ non-destructive root characterization.

Scope

Recent studies show that interactive effects of plant neighbourhood interactions follow non-linear and non-additive paths that are hard to explain. Common outcomes such as accumulation of roots mainly in the topsoil cannot be explained solely by competition theory but require a more inclusive theoretical, as well as an improved methodological framework. This will include the question of whether we can apply the same conceptual framework to crop versus natural species.

Conclusions

The development of non-invasive methods to dynamically study root–root interactions in vivo will provide the necessary tools to study a more inclusive conceptual framework for root–root interactions. By following the dynamics of root–root interactions through time in a whole range of scenarios and systems, using a wide variety of non-invasive methods, (such as fluorescent protein which now allows us to separately identify the roots of several individuals within soil), we will be much better equipped to answer some of the key questions in root physiology, ecology and agronomy.  相似文献   
130.

Background

Plants form the base of the terrestrial food chain and provide medicines, fuel, fibre and industrial materials to humans. Vascular land plants rely on their roots to acquire the water and mineral elements necessary for their survival in nature or their yield and nutritional quality in agriculture. Major biogeochemical fluxes of all elements occur through plant roots, and the roots of agricultural crops have a significant role to play in soil sustainability, carbon sequestration, reducing emissions of greenhouse gasses, and in preventing the eutrophication of water bodies associated with the application of mineral fertilizers.

Scope

This article provides the context for a Special Issue of Annals of Botany on ‘Matching Roots to Their Environment’. It first examines how land plants and their roots evolved, describes how the ecology of roots and their rhizospheres contributes to the acquisition of soil resources, and discusses the influence of plant roots on biogeochemical cycles. It then describes the role of roots in overcoming the constraints to crop production imposed by hostile or infertile soils, illustrates root phenotypes that improve the acquisition of mineral elements and water, and discusses high-throughput methods to screen for these traits in the laboratory, glasshouse and field. Finally, it considers whether knowledge of adaptations improving the acquisition of resources in natural environments can be used to develop root systems for sustainable agriculture in the future.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号