首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   329篇
  免费   60篇
  2023年   3篇
  2022年   2篇
  2021年   7篇
  2020年   5篇
  2019年   5篇
  2018年   6篇
  2017年   6篇
  2016年   17篇
  2015年   11篇
  2014年   18篇
  2013年   18篇
  2012年   25篇
  2011年   26篇
  2010年   8篇
  2009年   14篇
  2008年   22篇
  2007年   19篇
  2006年   17篇
  2005年   8篇
  2004年   10篇
  2003年   12篇
  2002年   13篇
  2001年   4篇
  2000年   4篇
  1999年   7篇
  1998年   3篇
  1997年   4篇
  1996年   4篇
  1995年   2篇
  1993年   3篇
  1992年   6篇
  1990年   2篇
  1989年   2篇
  1988年   7篇
  1986年   4篇
  1985年   4篇
  1984年   8篇
  1983年   6篇
  1982年   3篇
  1981年   3篇
  1978年   3篇
  1977年   3篇
  1975年   2篇
  1974年   6篇
  1973年   2篇
  1972年   2篇
  1971年   4篇
  1970年   5篇
  1969年   2篇
  1963年   2篇
排序方式: 共有389条查询结果,搜索用时 671 毫秒
91.
Adenylate energy charge in Acholeplasma laidlawii.   总被引:8,自引:7,他引:1       下载免费PDF全文
Adenosine 5'-triphosphate, adenosine 5'-diphosphate, and adenosine 5'-monophosphate were produced by Acholeplasma laidlawii B-PG9 growing in modified Edward medium. The adenylate energy charge was calculated to be 0.84 +/- 0.07 and ranged from 0.91 to 0.78 during exponential growth (12 to 24 h). During exponential growth, A. laidlawii contained, at 17.5 h, 2.3 X 10(-17) mol of adenosine 5'-triphosphate per colony-forming unit and, at 16 h, 27.3 nmol of adenosine 5'-triphosphate per mg (dry weight). The medium supported a doubling time of 0.95 h. The molar growth yields (Yglucose = grams [dry weight] per mole of glucose used) were 40.2 +/- 3.4 (16 h) and 57.1 +/- 9.7 (20 h) during midexponential growth. A maximum yield of 8.3 X 10(9) colony-forming units was reached at 24 h, when 56% of the initial concentration of glucose had been used. At 40 h, during the stationary phase, 14.95 +/- 3.75 mumol of glucose per ml of medium had been used. At this time, the culture fluids contained 21.86 +/0 mumol of lactate per ml and 3.14 +/- 0.13 mumol of pyruvate per ml.  相似文献   
92.
The thyroid hormone derivative N-bromoacetyl-3,3',5-triiodothyronine (BrAcT3) acts as an active site-directed inhibitor of rat liver iodothyronine deiodinase. Lineweaver Burk analysis of enzyme kinetic measurements showed that BrAcT3 is a competitive inhibitor of the 5'-deiodination of 3,3',5'-triiodothyronine (rT3) with an apparent Ki value of 0.1 nM. Preincubations of enzyme with BrAcT3 indicated that inhibition by this compound is irreversible. The inactivation rate obeyed saturation kinetics with a limiting inactivation rate constant of 0.35 min-1. Substrates and substrate analogs protected against inactivation by BrAcT3. Covalent incorporation of 125I-labeled BrAcT3 into "substrate-protectable" sites was proportional to the loss of deiodinase activity. The results suggest that BrAcT3 is a very useful affinity label for rat liver iodothyronine deiodinase.  相似文献   
93.
Urinalysis is an emerging method for monitoring the health and energy balance of wild primates. Here, we report the first urinalysis of wild gibbons. We used multi‐reagent test strips to monitor the health status of 52 individual white‐handed gibbons (Hylobates lar) inhabiting Khao Yai National Park, Thailand. Most urinary reference values were within normal ranges; however, regardless of age‐ and sex‐class or monthly fruit productivity, we found unexpectedly high rates of urinary leukocytes (50% and 90% of individuals in 2001–2003 and 2006, respectively). In contrast to previous studies of African apes, this finding is coupled with the near absence of urinary nitrites, demonstrating pervasive levels of sterile pyuria. This result is the first reported case of sterile pyuria in a population of wild primates. The etiology of human sterile pyuria is diverse, but in all cases it is diagnostic of systemic inflammation. We discuss the potential causes of sterile pyuria in the gibbons of Khao Yai. Am. J. Primatol. 71:880–883, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   
94.
95.
The concentrations of T-cell suppressor factor (TsF) were examined by competitive binding assays in the uterus, spleen, and regional lymph nodes draining the uterus in Day-5 pregnant mice or in ovariectomized mice given hormone treatments to induce conditions of delayed implantation or implantation. The amounts of immunoreactive TsF on Day 5 of pregnancy were 2.055 +/- 0.302, 0.803 +/- 0.088, 0.426 +/- 0.136 ng TsF/mg extractable protein for the regional lymph nodes, spleen and uterus, respectively, during Day 5 of pregnancy. When implantation was prevented by ovariectomy on Day 4 followed by treatment with only progesterone, amounts of TsF (as a % of Day 5 value) were decreased to 57% in the uterus and increased to 141% in the spleen and 180% in the regional lymph nodes. When implantation was then initiated with the addition of oestradiol-17 beta to the progesterone treatment, amounts of TsF were increased to 206% in the uterus, 318% in the spleen, and remained unchanged at 180% in the regional lymph nodes. These experiments suggest that the amounts of TsF in the uterus and spleen are dependent upon the implantation process, whereas amounts of TsF in the regional lymph nodes are independent of this event.  相似文献   
96.
Desautels  Daniel J.  Wang  Yebin  Ripp  Asher  Beaman  Amber  Andea  Sena  Hartman  Rachel B.  Civitello  David J. 《Hydrobiologia》2022,849(16):3607-3616
Hydrobiologia - Schistosomes are parasitic flatworms that cycle between humans and freshwater snails, infecting more than 200 million humans. Many schistosome-endemic sites are invaded by...  相似文献   
97.
Concussion can occur from a variety of events (falls to ice, collisions etc) in ice hockey, and as a result it is important to identify how these different impact sources affect the relationship between impact kinematics and strain that has been found to be associated to this injury. The purpose of this research was to examine the relationship between kinematic variables and strain in the brain for impact sources that led to concussion in ice hockey. Video of professional ice hockey games was analyzed for impacts that resulted in reported clinically diagnosed concussions. The impacts were reconstructed using physical models/ATDs to determine the impact kinematics and then simulated using finite element modelling to determine maximum principal strain and cumulative strain damage measure. A stepwise linear regression was conducted between linear acceleration, change in linear velocity, rotational acceleration, rotational velocity, and strain response in the brain. The results for the entire dataset was that rotational acceleration had the highest r2 value for MPS (r2 = 0.581) and change in rotational velocity for cumulative strain damage measure (r2 = 450). When the impact source (shoulder, elbow, boards, or ice impacts) was isolated the rotational velocity and acceleration r2 value increased, indicating that when evaluating the relationships between kinematics and strain based metrics the characteristics of the impact is an important factor. These results suggest that rotational measures should be included in future standard methods and helmet innovation and design in ice hockey as they have the highest association with strain in the brain tissues.  相似文献   
98.
The biggest risk factor for Alzheimer's disease is the process of ageing, but the mechanisms that lead to the manifestation of the disease remain to be elucidated. Why age triggers the disease is unclear but an emerging theme is the inability for a cell to efficiently maintain many key processes such as energy production, repair, and regenerative mechanisms. Metal ions are essential to the metabolic function of every cell. This review will explore the role and reported changes in metal ions in Alzheimer disease, particularly the brain, blood and cerebral spinal fluid, emphasizing how iron, copper and zinc may be involved through the interactions with amyloid precursor protein, the proteolytically cleaved peptide amyloid-beta (Aβ), and other related metalloproteins. Finally, we explore the monomeric makeup of possible Aβ dimers, what a dimeric Aβ species from Alzheimer's disease brain tissue is likely to be composed of, and discuss how metals may influence Aβ production and toxicity via a copper catalyzed dityrosine cross-link.  相似文献   
99.
Transgenic expression of human amyloid β (Aβ) peptide in body wall muscle cells of Caenorhabditis elegans has been used to better understand aspects of Alzheimer disease (AD). In human aging and AD, Aβ undergoes post-translational changes including covalent modifications, truncations, and oligomerization. Amino truncated Aβ is increasingly recognized as potentially contributing to AD pathogenesis. Here we describe surface-enhanced laser desorption ionization-time of flight mass spectrometry mass spectrometry of Aβ peptide in established transgenic C. elegans lines. Surprisingly, the Aβ being expressed is not full-length 1–42 (amino acids) as expected but rather a 3–42 truncation product. In vitro analysis demonstrates that Aβ3–42 self-aggregates like Aβ1–42, but more rapidly, and forms fibrillar structures. Similarly, Aβ3–42 is also the more potent initiator of Aβ1–40 aggregation. Seeded aggregation via Aβ3–42 is further enhanced via co-incubation with the transition metal Cu(II). Although unexpected, the C. elegans model of Aβ expression can now be co-opted to study the proteotoxic effects and processing of Aβ3–42.Numerous studies support a role for aggregating Aβ3 in mediating the toxicity that underlies AD (1, 2). However, several key questions remain central to understanding how AD and Aβ pathology are related. What is the connection between Aβ aggregation and toxicity? Is there a specific toxic Aβ conformation or species? How and why does aging impact on Aβ precipitation? Significant effort to address these questions has been invested in the use of vertebrate and simple invertebrate model organisms to simulate neurodegenerative diseases through transgenic expression of human Aβ (3). From these models, several novel insights into the proteotoxicity of Aβ have been gained (47).Human Aβ (e.g. in brain, cerebrospinal fluid, or plasma) is not found as a single species but rather as diverse mixtures of various modified, truncated, and cross-linked forms (810). Specific truncations, covalent modifications, and cross-linked oligomers of Aβ have potentially important roles in determining Aβ-associated neurotoxicity. For example, N-terminal truncations of Aβ have increased abundance in AD, rapidly aggregate, and are neurotoxic (9, 11). Furthermore, the N-terminal glutamic acid residue of Aβ3–42 can be cyclized to pyroglutamate (Aβ3(pE)-42) (12), which may be particularly important in AD pathogenesis (13, 14). Aβ3(pE)-42 is a significant fraction of total Aβ in AD brain (15), accounting for more than 50% of Aβ accumulated in plaques (16). Aβ3(pE)-42 seeds Aβ aggregation (17), confers proteolytic resistance, and is neurotoxic (13). Recently, glutaminyl cyclase (QC) has been proposed to catalyze, in vivo, pyroglutamate formation of Aβ3(pE)-40/42 (14, 18). Aβ1–42 itself cannot be cyclized by QC to Aβ3(pE)-42 (19), unlike Aβ that commences with an N-terminal glutamic acid-residue (e.g.3–42 and Aβ11–42) (20). QC has broad expression in mammalian brain (21, 22), and its inhibition attenuates accumulation of Aβ3(pE)-42 into plaques and improves cognition in a transgenic mouse model of AD that overexpresses human amyloid precursor protein (14). N-terminal truncations at position 3 have been reported in senile plaques (23, 24); however, the process that generates Aβ3–42 is unknown. Currently there are no reported animal models of Aβ3–42 expression.Advances in surface-enhanced laser desorption ionization-time of flight mass spectrometry (SELDI-TOF MS) analysis now facilitate accurate identification of particular Aβ species. Using this technology, we examined well characterized C. elegans transgenic models of AD that develop amyloid aggregates (25, 26) to see whether the human Aβ they express is post-translationally modified.  相似文献   
100.
Our knowledge of nucleic acid structure grew rapidly over the past decade with the determination to high resolution of larger structures of great biological significance. Advances in sample preparation, crystallization techniques, cryocrystallography, access to synchrotron radiation, and crystallographic software continue to accelerate the structure determination of nucleic acids. Crystallographic studies of DNA and RNA molecules share many considerations that we outline here. The application of crystallography to RNA is illustrated with the structure determination of the CUG repeat that is linked to type I myotonic dystrophy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号