首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   329篇
  免费   60篇
  389篇
  2023年   3篇
  2022年   2篇
  2021年   7篇
  2020年   5篇
  2019年   5篇
  2018年   6篇
  2017年   6篇
  2016年   17篇
  2015年   11篇
  2014年   18篇
  2013年   18篇
  2012年   25篇
  2011年   26篇
  2010年   8篇
  2009年   14篇
  2008年   22篇
  2007年   19篇
  2006年   17篇
  2005年   8篇
  2004年   10篇
  2003年   12篇
  2002年   13篇
  2001年   4篇
  2000年   4篇
  1999年   7篇
  1998年   3篇
  1997年   4篇
  1996年   4篇
  1995年   2篇
  1993年   3篇
  1992年   6篇
  1990年   2篇
  1989年   2篇
  1988年   7篇
  1986年   4篇
  1985年   4篇
  1984年   8篇
  1983年   6篇
  1982年   3篇
  1981年   3篇
  1978年   3篇
  1977年   3篇
  1975年   2篇
  1974年   6篇
  1973年   2篇
  1972年   2篇
  1971年   4篇
  1970年   5篇
  1969年   2篇
  1963年   2篇
排序方式: 共有389条查询结果,搜索用时 15 毫秒
331.
Parasite alteration of the host (predator) functional response provides a mechanism by which parasites can alter predator–prey population dynamics and stability. We tested the hypothesis that parasitic infection of a crab (Eurypanopeus depressus) by a rhizocephalan barnacle (Loxothylacus panopei) can modify the crab’s functional response to mussel (Brachidontes exustus) prey and investigated behavioral mechanisms behind a potential change in the response. Infection dramatically reduced mussel consumption by crabs across mussel densities, resulting in a decreased attack rate parameter and a nearly eightfold reduction in maximum consumption (i.e. the asymptote, or inverse of the handling time parameter) in a type II functional response model. To test whether increased handling time of infected crabs drove the decrease in maximum consumption rate, we independently measured handling time through observation. Infection had no effect on handling time and thus could not explain the reduction in consumption. Infection did, however, increase the time that it took crabs to begin handling prey after the start of the handling time experiment. Furthermore, crabs harboring relatively larger parasites remained inactive longer before making contact with prey. This behavioral modification likely contributed to the reduced mussel consumption of infected crabs. A field survey revealed that 20 % of crabs inhabiting oyster reefs at the study site (North Inlet estuary, Georgetown, South Carolina, USA) are infected by the barnacle parasite, indicating that parasite infection could have a substantial effect on the population level crab-mussel interaction.  相似文献   
332.
Investigators have long searched for a polyploidy paradigm—rules or principles that might be common following polyploidization (whole‐genome duplication, WGD). Here we attempt to integrate what is known across the more thoroughly investigated polyploid systems on topics ranging from genetics to ecology. We found that while certain rules may govern gene retention and loss, systems vary in the prevalence of gene silencing vs. homeolog loss, chromosomal change, the presence of a dominant genome (in allopolyploids), and the relative importance of hybridization vs. genome doubling per se. In some lineages, aspects of polyploidization are repeated across multiple origins, but in other species multiple origins behave more stochastically in terms of genetic and phenotypic change. Our investigation also reveals that the path to synthesis is hindered by numerous gaps in our knowledge of even the best‐known systems. Particularly concerning is the absence of linkage between genotype and phenotype. Moreover, most recent studies have focused on the genetic and genomic attributes of polyploidy, but rarely is there an ecological or physiological context. To promote a path to a polyploidy paradigm (or paradigms), we propose a major community goal over the next 10–20 yr to fill the gaps in our knowledge of well‐studied polyploids. Before a meaningful synthesis is possible, more complete data sets are needed for comparison—systems that include comparable genetic, genomic, chromosomal, proteomic, as well as morphological, physiological, and ecological data. Also needed are more natural evolutionary model systems, as most of what we know about polyploidy continues to come from a few crop and genetic models, systems that often lack the ecological context inherent in natural systems and necessary for understanding the drivers of biodiversity.  相似文献   
333.
Griffen BD  Williamson T 《Oecologia》2008,155(1):151-159
Interactions between multiple predator species are frequent in natural communities and can have important implications for shared prey survival. Predator density may be an important component of these interactions between predator species, as the frequency of interactions between species is largely determined by species density. Here we experimentally examine the importance of predator density for interactions between predator species and subsequent impacts on prey. We show that aggressive interactions between the predatory shore crabs Carcinus maenas and Hemigrapsus sanguineus increased with predator density, yet did not increase as fast as negative interactions between conspecifics. At low density, interactions between conspecific and heterospecific predators had similar inhibitory impacts on predator function, whereas conspecific interference was greater than interference from heterospecifics at high predator density. Thus the impact of conspecific interference at high predator density was sufficient in itself that interactions with a second predator species had no additional impact on per capita predation. Spatial and temporal variability in predator density is a ubiquitous characteristic of natural systems that should be considered in studies of multiple predator species.  相似文献   
334.
335.
336.
Killing of bacterial spores by H2O2 at elevated but sublethal temperatures and neutral pH occurred without lysis. However, with prolonged exposure or higher concentrations of the agent, secondary lytic processes caused major damage successively to the coat, cortex, and protoplast, as evidenced by electron and phase contrast microscopy. These processes were also reflected in changes in differential scanning calorimetric profiles for H2O2-treated spores. Endothermic transitions in the profiles occurred at lower temperatures than usual as a result of H2O2 damage. Thus, H2O2 sensitized the cells to heat damage. Longer exposure to H2O2 resulted in total disappearance of the transitions, indicative of major disruptions of cell structure. Spores but not vegetative cells were protected against the lethal action of H2O2 by the transition metal cations Cu+, Cu2+, Co2+, Co3+, Fe2+, Fe3+, Mn2+, Ti3+, and Ti4+. The metal chelator EDTA was also somewhat protective, while o-phenanthroline, citrate, deferoxamine, and ethanehydroxydiphosphonate were only marginally so. Superoxide dismutase and a variety of other free-radical scavengers were not protective. In contrast, reducing agents such as sulfhydryl compounds and ascorbate at concentrations of 20 to 50 mM were highly protective. Decoating or demineralization of the spores had only minor effects. The marked dependence of H2O2 sporicidal activity on moderately elevated temperature and the known low reactivity of H2O2 itself suggest that radicals are involved in its killing action. However, the protective effects of a variety of oxidized or reduced transition metal ions indicate that H2O2 killing of spores is markedly different from that of vegetative cells.  相似文献   
337.
Five types of dormant Bacillus spores, between and within species, were selected representing a 600-fold range in moist-heat resistance determined as a D100 value. The wet and dry density and the solids and water content of the entire spore and isolated integument of each type were determined directly from gram masses of material, with correction for interstitial water. The ratio between the volume occupied by the protoplast (the structures bounded by the inner pericytoplasm membrane) and the volume occupied by the sporoplast (the structures bounded by the outer pericortex membrane) was calculated from measurements made on electron micrographs of medially thin-sectioned spores. Among the various spore types, an exponential increase in the heat resistance correlated directly with the wet density and inversely with the water content and with the protoplast/sporoplast volume ratio. Altogether with results supported a hypothesis that the extent of heat resistance is based in whole or in part on the extent of dehydration and diminution of the protoplast in the dormant spore, without implications about physiological mechanisms for attaining this state.  相似文献   
338.
In mammalian cells the Golgi apparatus undergoes an extensive disassembly process at the onset of mitosis that is believed to facilitate equal partitioning of this organelle into the two daughter cells. However, the underlying mechanisms for this fragmentation process are so far unclear. Here we have investigated the role of the ADP-ribosylation factor-1 (ARF1) in this process to determine whether Golgi fragmentation in mitosis is mediated by vesicle budding. ARF1 is a small GTPase that is required for COPI vesicle formation from the Golgi membranes. Treatment of Golgi membranes with mitotic cytosol or with purified coatomer together with wild type ARF1 or its constitutive active form, but not the inactive mutant, converted the Golgi membranes into COPI vesicles. ARF1-depleted mitotic cytosol failed to fragment Golgi membranes. ARF1 is associated with Golgi vesicles generated in vitro and with vesicles in mitotic cells. In addition, microinjection of constitutive active ARF1 did not affect mitotic Golgi fragmentation or cell progression through mitosis. Our results show that ARF1 is active during mitosis and that this activity is required for mitotic Golgi fragmentation.  相似文献   
339.
Bettinger BT  Clark MG  Amberg DC 《Genetics》2007,175(4):1637-1648
Osmotic stress induces activation of an adaptive mitogen-activated protein kinase pathway in concert with disassembly of the actin cytoskeleton by a mechanism that is not understood. We have previously shown that the conserved actin-interacting MAP kinase kinase kinase Ssk2p/MEKK4, a member of the high-osmolarity glycerol (HOG) MAPK pathway of Saccharomyces cerevisiae, mediates recovery of the actin cytoskeleton following osmotic stress. In this study, we have employed in vitro kinase assays to show that Ssk2p kinase activity is activated for the actin recovery pathway via a noncanonical, Ssk1p-independent mechanism. Our work also shows that Ssk2p requires the polarisome proteins Bud6p and Pea2p to promote efficient, polarized actin reassembly but that this requirement can be bypassed by overexpression of Ssk2p. Formin (BNI1 or BNR1) and tropomyosin functions are also required for actin recovery but, unlike for Bud6p and Pea2p, these requirements cannot be bypassed by overexpression of Ssk2p. These results suggest that Ssk2p acts downstream of Bud6p and Pea2p and upstream of tropomyosin to drive actin recovery, possibly by upregulating the actin nucleation activity of the formins.  相似文献   
340.
Taxadiene is the first dedicated intermediate in the biosynthetic pathway of the anticancer compound Taxol. Recent studies have taken advantage of heterologous hosts to produce taxadiene and other isoprenoid compounds, and such ventures now offer research opportunities that take advantage of the engineering tools associated with the surrogate host. In this study, metabolic engineering was applied in the context of over-expression targets predicted to improve taxadiene production. Identified targets included genes both within and outside of the isoprenoid precursor pathway. These targets were then tested for experimental over-expression in a heterologous Escherichia coli host designed to support isoprenoid biosynthesis. Results confirmed the computationally predicted improvements and indicated a synergy between targets within the expected isoprenoid precursor pathway and those outside this pathway. The presented algorithm is broadly applicable to other host systems and/or product choices.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号