首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   329篇
  免费   60篇
  2023年   3篇
  2022年   2篇
  2021年   7篇
  2020年   5篇
  2019年   5篇
  2018年   6篇
  2017年   6篇
  2016年   17篇
  2015年   11篇
  2014年   18篇
  2013年   18篇
  2012年   25篇
  2011年   26篇
  2010年   8篇
  2009年   14篇
  2008年   22篇
  2007年   19篇
  2006年   17篇
  2005年   8篇
  2004年   10篇
  2003年   12篇
  2002年   13篇
  2001年   4篇
  2000年   4篇
  1999年   7篇
  1998年   3篇
  1997年   4篇
  1996年   4篇
  1995年   2篇
  1993年   3篇
  1992年   6篇
  1990年   2篇
  1989年   2篇
  1988年   7篇
  1986年   4篇
  1985年   4篇
  1984年   8篇
  1983年   6篇
  1982年   3篇
  1981年   3篇
  1978年   3篇
  1977年   3篇
  1975年   2篇
  1974年   6篇
  1973年   2篇
  1972年   2篇
  1971年   4篇
  1970年   5篇
  1969年   2篇
  1963年   2篇
排序方式: 共有389条查询结果,搜索用时 15 毫秒
141.
142.
The underlying causes of aging remain elusive, but may include decreased intestinal homeostasis followed by disruption of the intestinal barrier, which can be mimicked by nutrient‐rich diets. S3QELs are small‐molecule suppressors of site IIIQo electron leak; they suppress superoxide generation at complex III of the mitochondrial electron transport chain without inhibiting oxidative phosphorylation. Here we show that feeding different S3QELs to Drosophila on a high‐nutrient diet protects against greater intestinal permeability, greater enterocyte apoptotic cell number, and shorter median lifespan. Hif‐1α knockdown in enterocytes also protects, and blunts any further protection by S3QELs. Feeding S3QELs to mice on a high‐fat diet also protects against the diet‐induced increase in intestinal permeability. Our results demonstrate by inference of S3QEL use that superoxide produced by complex III in enterocytes contributes to diet‐induced intestinal barrier disruption in both flies and mice.  相似文献   
143.
The medicinal value associated with complex polyketide and nonribosomal peptide natural products has prompted biosynthetic schemes dependent upon heterologous microbial hosts. Here we report the successful biosynthesis of yersiniabactin (Ybt), a model polyketide-nonribosomal peptide hybrid natural product, using Escherichia coli as a heterologous host. After introducing the biochemical pathway for Ybt into E. coli, biosynthesis was initially monitored qualitatively by mass spectrometry. Next, production of Ybt was quantified in a high-cell-density fermentation environment with titers reaching 67 +/- 21 (mean +/- standard deviation) mg/liter and a volumetric productivity of 1.1 +/- 0.3 mg/liter-h. This success has implications for basic and applied studies on Ybt biosynthesis and also, more generally, for future production of polyketide, nonribosomal peptide, and mixed polyketide-nonribosomal peptide natural products using E. coli.  相似文献   
144.
Habitats and ecological communities occurring in the mesophotic region of the central Great Barrier Reef (GBR), Australia, were investigated using autonomous underwater vehicle (AUV) from 51 to 145 m. High-resolution multibeam bathymetry of the outer-shelf at Hydrographers Passage in the central GBR revealed submerged linear reefs with tops at 50, 55, 80, 90, 100 and 130 m separated by flat, sandy inter-reefal areas punctuated by limestone pinnacles. Cluster analysis of AUV images yielded five distinct site groups based on their benthic macrofauna, with rugosity and the presence of limestone reef identified as the most significant abiotic factors explaining the distribution of macrofaunal communities. Reef-associated macrofaunal communities occurred in three distinct depth zones: (1) a shallow (<60 m) community dominated by photosynthetic taxa, notably scleractinian corals, zooxanthellate octocorals and photosynthetic sponges; (2) a transitional community (60–75 m) comprising both zooxanthellate taxa and azooxanthellate taxa (notably gorgonians and antipatharians); and (3) an entirely azooxanthellate community (>75 m). The effects of depth and microhabitat topography on irradiance most likely play a critical role in controlling vertical zonation on reef substrates. The lower depth limits of zooxanthellate corals are significantly shallower than that observed in many other mesophotic coral ecosystems. This may be a result of resuspension of sediments from the sand sheets by strong currents and/or a consequence of cold water upwelling.  相似文献   
145.
146.
147.
148.
A variant strain that produced spores lacking exosporium was isolated from a culture of Bacillus megaterium QM-B1551. Two additional spore morphotypes were obtained from the parent and variant strains by chemical removal of the complex of coat and outer membrane. Among the four morphotype spores, heat resistance did not correlate with total water content, wet density, refractive index, or dipicolinate or cation content, but did correlate with the volume ratio of protoplast to protoplast plus cortex. The divestment of integument layers exterior to the cortex had little influence on heat resistance. Moreover, the divestment did not change the response of either the parent or the variant spores to various germination-initiating agents, except for making the spores susceptible to germination by lysozyme. The primary permeability barrier to glucose for the intact parent and variant spores was found to be the outer membrane, whereas the barrier for the divested spores was the inner membrane.  相似文献   
149.
Abstract In Escherichia coli , adenosine 3',5'-cyclic monophosphate (cAMP) is excreted into the growth media. Making use of a phosphodiesterase as scavenger of extracellular cAMP we show that: (i) extracellular cAMP does not interfere with cellular functions; (ii) transient accumulation of cAMP, followed by its rapid excretion, elicits a severe repression of catabolic enzymes.  相似文献   
150.
Photometric immersion refractometry of bacterial spores   总被引:6,自引:4,他引:2       下载免费PDF全文
Photometric immersion refractometry was used to determine the average apparent refractive index (n) of five types of dormant Bacillus spores representing a 600-fold range in moist-heat resistance determined as a D100 value. The n of a spore type increased as the molecular size of various immersion solutes decreased. For comparison of the spore types, the n of the entire spore and of the isolated integument was determined by use of bovine serum albumin, which is excluded from permeating into them. The n of the sporoplast (the structures bounded by the outer pericortex membrane) was determined by use of glucose, which was shown to permeate into the spore only as deeply as the pericortex membrane. Among the various spore types, an exponential increase in the heat resistance correlated with the n of the entire spore and of the sporoplast, but not of the isolated perisporoplast integument. Correlation of the n with the solids content of the entire spore provided a method of experimentally obtaining the refractive index increment (dn/dc), which was constant for the various spore types and enables the calculation of solids and water content from an n. Altogether, the results showed that the total water content is distributed unequally within the dormant spore, with less water in the sporoplast than in the perisporoplast integument, and that the sporoplast becomes more refractile and therefore more dehydrated as the heat resistance becomes greater among the various spore types.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号