首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   329篇
  免费   60篇
  2023年   3篇
  2022年   2篇
  2021年   7篇
  2020年   5篇
  2019年   5篇
  2018年   6篇
  2017年   6篇
  2016年   17篇
  2015年   11篇
  2014年   18篇
  2013年   18篇
  2012年   25篇
  2011年   26篇
  2010年   8篇
  2009年   14篇
  2008年   22篇
  2007年   19篇
  2006年   17篇
  2005年   8篇
  2004年   10篇
  2003年   12篇
  2002年   13篇
  2001年   4篇
  2000年   4篇
  1999年   7篇
  1998年   3篇
  1997年   4篇
  1996年   4篇
  1995年   2篇
  1993年   3篇
  1992年   6篇
  1990年   2篇
  1989年   2篇
  1988年   7篇
  1986年   4篇
  1985年   4篇
  1984年   8篇
  1983年   6篇
  1982年   3篇
  1981年   3篇
  1978年   3篇
  1977年   3篇
  1975年   2篇
  1974年   6篇
  1973年   2篇
  1972年   2篇
  1971年   4篇
  1970年   5篇
  1969年   2篇
  1963年   2篇
排序方式: 共有389条查询结果,搜索用时 15 毫秒
111.
112.
The siderophores of Bacillus anthracis are critical for the pathogen’s proliferation and may be necessary for its virulence. Bacillus anthracis str. Sterne cells were cultured in iron free media and the siderophores produced were isolated and purified using a combination of XAD-2 resin, reverse-phase FPLC, and size exclusion chromatography. A combination of 1H and 13C NMR spectroscopy, UV spectroscopy and ESI-MS/MS fragmentation were used to identify the primary siderophore as petrobactin, a catecholate species containing unusual 3,4-dihydroxybenzoate moieties, previously only identified in extracts of Marinobacter hydrocarbonoclasticus. A secondary siderophore was observed and structural analysis of this species is consistent with that reported for bacillibactin, a siderophore observed in many species of bacilli. This is the first structural characterization of a siderophore from B. anthracis, as well as the first characterization of a 3,4-DHB containing catecholate in a pathogen.  相似文献   
113.
114.
115.
The physiological condition and fecundity of an organism is frequently controlled by diet. As changes in environmental conditions often cause organisms to alter their foraging behavior, a comprehensive understanding of how diet influences the fitness of an individual is central to predicting the effect of environmental change on population dynamics. We experimentally manipulated the diet of the economically and ecologically important blue crab, Callinectes sapidus, to approximate the effects of a dietary shift from primarily animal to plant tissue, a phenomenon commonly documented in crabs. Crabs whose diet consisted exclusively of animal tissue had markedly lower mortality and consumed substantially more food than crabs whose diet consisted exclusively of seaweed. The quantity of food consumed had a significant positive influence on reproductive effort and long-term energy stores. Additionally, seaweed diets produced a three-fold decrease in hepatopancreas lipid content and a simultaneous two-fold increase in crab aggression when compared to an animal diet. Our results reveal that the consumption of animal tissue substantially enhanced C. sapidus fitness, and suggest that a dietary shift to plant tissue may reduce crab population growth by decreasing fecundity as well as increasing mortality. This study has implications for C. sapidus fisheries.  相似文献   
116.
Insects have evolved mechanical form and function over millions of years. Ants, in particular, can lift and carry heavy loads relative to their body mass. Loads are lifted with the mouthparts, transferred through the neck joint to the thorax, and distributed over six legs and tarsi (feet) that anchor to the supporting surface. While previous research has explored attachment mechanisms of the tarsi, little is known about the relation between the mechanical function and the structural design and material properties of the ant. This study focuses on the neck – the single joint that withstands the full load capacity. We combine mechanical testing, computed tomography (CT), scanning electron microscopy (SEM), and computational modeling to better understand the mechanical structure–function relation of the neck joint of the ant species Formica exsectoides (Allegheny mound ant). Our mechanical testing results show that the soft tissue forming the neck joint of F. exsectoides exhibits an elastic modulus of 230±140 MPa and can withstand ~5000 times the ant's weight. We developed a 3-dimensional (3D) model of the structural components of the neck joint for simulation of mechanical behavior. Finite element (FE) simulations reveal the neck-to-head transition where the soft membrane material meets the hard exoskeleton as the critical point for failure of the neck joint, which is consistent with our experiments. Our results further indicate that the neck joint structure exhibits anisotropic mechanical behavior with the highest stiffness occurring when the load path is aligned with the axis of the neck.  相似文献   
117.
The independent isolation and sequence determination in our laboratories of three closely related Atrial Natriuretic Factor peptides from rat atria confirm the sequences of ANF peptides reported by Seidah et al and synthesized by Nutt et al [Proc. Natl. Acad. Sci., (1984) in press] and contain the sequences reported by Flynn et al [Biochem. Biophys. Res. Commun. (1983) 117: 859-865] and by Currie et al [Science (1984) 223: 67-69]. In addition, we provide proof for a C-terminal tyrosine rather than tyrosine amide in our isolated peptides.  相似文献   
118.
The enzyme γ-glutamyltranspeptidase 1 (GGT1) is a conserved member of the N-terminal nucleophile hydrolase family that cleaves the γ-glutamyl bond of glutathione and other γ-glutamyl compounds. In animals, GGT1 is expressed on the surface of the cell and has critical roles in maintaining cysteine levels in the body and regulating intracellular redox status. Expression of GGT1 has been implicated as a potentiator of asthma, cardiovascular disease, and cancer. The rational design of effective inhibitors of human GGT1 (hGGT1) has been delayed by the lack of a reliable structural model. The available crystal structures of several bacterial GGTs have been of limited use due to differences in the catalytic behavior of bacterial and mammalian GGTs. We report the high resolution (1.67 Å) crystal structure of glutamate-bound hGGT1, the first of any eukaryotic GGT. Comparisons of the active site architecture of hGGT1 with those of its bacterial orthologs highlight key differences in the residues responsible for substrate binding, including a bimodal switch in the orientation of the catalytic nucleophile (Thr-381) that is unique to the human enzyme. Compared with several bacterial counterparts, the lid loop in the crystal structure of hGGT1 adopts an open conformation that allows greater access to the active site. The hGGT1 structure also revealed tightly bound chlorides near the catalytic residue that may contribute to catalytic activity. These are absent in the bacterial GGTs. These differences between bacterial and mammalian GGTs and the new structural data will accelerate the development of new therapies for GGT1-dependent diseases.  相似文献   
119.
While both predator body size and prey refuge provided by habitat structure have been established as major factors influencing the functional response (per capita consumption rate as a function of prey density), potential interactions between these factors have rarely been explored. Using a crab predator (Panopeus herbstii) – mussel prey (Brachidontes exustus) system, we examined the allometric scaling of the functional response in oyster (Crassostrea virginica) reef habitat, where crevices within oyster clusters provide mussels refuge from predation. A field survey of mussel distribution showed that mussels attach closer to the cluster periphery at high mussel density, indicating the potential for saturation of the refuge. In functional response experiments, the consumption rate of large crabs was depressed at low prey density relative to small crabs, while at high prey density the reverse was true. Specifically, the attack rate coefficient and handling time both decreased non‐linearly with crab size. An additional manipulation revealed that at low prey densities, the ability of large crabs to maneuver their claws and bodies to extract mussels from crevices was inhibited relative to small crabs by the structured habitat, reducing their attack rate. At high prey densities, crevices were saturated, forcing mussels to the edge of clusters where crabs were only limited by handling time. Our study illuminates a potentially general mechanism where the quality of the prey refuge provided by habitat structure is dependent on the relative size of the predator. Thus anthropogenic influences that alter the natural crab size distribution or degrade reef habitat structure could threaten the long‐term stability of the crab –mussel interaction in reefs.  相似文献   
120.
TLR activation is an important component of innate immunity but also contributes to the severity of inflammatory diseases. Cysteine cathepsins (Cat) B, L and S, which are endosomal and lysosomal proteases, participate in numerous physiological systems and are upregulated during various inflammatory disorders and cancers. Macrophages have the highest cathepsin expression and are major contributors to inflammation and tissue damage during chronic inflammatory diseases. We investigated the impact of TLR activation on macrophage Cat B, L and S activities using live-cell enzymatic assays. TLR2, TLR3 and TLR4 ligands increased intracellular activities of these cathepsins in a differential manner. TLR4-induced cytokines increased proteolytic activities without changing mRNA expression of cathepsins or their endogenous inhibitors. Neutralizing antibodies recognizing TNF-α, IL-1β and IFN-β differentially eliminated cathepsin upregulation. These findings indicate cytokines induced by MyD88-dependent and -independent signaling cascades regulate cathepsin activities during macrophage responses to TLR stimulation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号