首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   121篇
  免费   9篇
  2022年   3篇
  2021年   6篇
  2019年   1篇
  2018年   2篇
  2017年   1篇
  2016年   1篇
  2015年   5篇
  2014年   3篇
  2013年   2篇
  2012年   6篇
  2011年   7篇
  2010年   5篇
  2009年   5篇
  2008年   5篇
  2007年   6篇
  2006年   6篇
  2005年   4篇
  2004年   6篇
  2003年   6篇
  2002年   7篇
  2001年   3篇
  2000年   1篇
  1999年   4篇
  1998年   4篇
  1997年   2篇
  1996年   2篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1991年   2篇
  1990年   1篇
  1988年   3篇
  1987年   3篇
  1986年   3篇
  1982年   1篇
  1981年   1篇
  1979年   2篇
  1978年   3篇
  1974年   2篇
  1973年   1篇
  1972年   1篇
  1970年   1篇
排序方式: 共有130条查询结果,搜索用时 31 毫秒
81.
Nitrous oxide (N2O) emissions from grazed pastures are a product of microbial transformations of nitrogen and the prevailing view is that these only occur in the soil. Here we show this is not the case. We have found ammonia-oxidising bacteria (AOB) are present on plant leaves where they produce N2O just as in soil. AOB (Nitrosospira sp. predominantly) on the pasture grass Lolium perenne converted 0.02–0.42% (mean 0.12%) of the oxidised ammonia to N2O. As we have found AOB to be ubiquitous on grasses sampled from urine patches, we propose a ‘plant'' source of N2O may be a feature of grazed grassland.In terms of climate forcing, nitrous oxide (N2O) is the third most important greenhouse gas (Blunden and Arndt, 2013). Agriculture is the largest source of anthropogenic N2O (Reay et al., 2012) with about 20% of agricultural emissions coming from grassland grazed by animals (Oenema et al., 2005).Grazed grassland is a major source of N2O because grazers harvest nitrogen (N) from plants across a wide area but recycle it back onto the pasture, largely as urine, in patches of very high N concentration. The N in urine patches is often in excess of what can be used by plants resulting in losses through leaching as nitrate, as N2O and through volatilisation as ammonia (NH3) creating a high NH3 environment in the soil and plant canopy; an important point that we will return to later. The established wisdom is that N2O is generated exclusively by soil-based microbes such as ammonia-oxidising bacteria (AOB). This soil biology is represented in models designed to simulate N2O emissions and the soil is a target for mitigation strategies such as the use of nitrification inhibitors.We have previously shown that pasture plants can emit N2O largely through acting as a conduit for emissions generated in the soil, which are themselves controlled to some degree by the plant (Bowatte et al., 2014). In this case the origin of the emission is still the soil microbes. However, AOB have been found on the leaves of plants, for example, Norway spruce (Papen et al., 2002; Teuber et al., 2007) and weeds in rice paddies (Bowatte et al., 2006), prompting us to ask whether AOB might be present on the leaves of pasture species and contribute to N2O emissions as they do in soil.We looked for AOB on plants in situations where NH3 concentrations were likely to be high, choosing plants from urine patches in grazed pastures and plants from pastures surrounding a urea fertiliser manufacturing plant. DNA was extracted from the leaves (including both the surface and apoplast) and the presence of AOB tested using PCR. AOB were present in all the species we examined—the grasses Lolium perenne, Dactylis glomerata, Anthoxanthum odoratum, Poa pratensis, Bromus wildenowii and legumes Trifolium repens and T. subterraneum.To measure whether leaf AOB produce N2O, we used intact plants of ryegrass (L. perenne) lifted as cores from a paddock that had been recently grazed by adult sheep. The cores were installed in a chamber system designed to allow sampling of above- and belowground environments separately (Bowatte et al., 2014). N2O emissions were measured from untreated (control) plants and from plants where NH3 was added to the aboveground chamber and leaves were either untreated or sterilised by wiping twice with paper towels soaked in 1% hypoclorite (Sturz et al., 1997) and then with sterile water. We tested for the presence and abundance of AOB on the leaves by extracting DNA and using PCR and real-time PCR targeting the ammonia monoxygenase A (amoA) gene, which is characteristic of AOB. AOB identity was established using cloning and DNA sequencing. Further details of these experiments can be found in the Supplementary Information.The addition of NH3 to untreated plants significantly stimulated N2O emissions (P<0.001) compared with the controls; by contrast, the plants with sterilised leaves produced significantly less N2O than controls (P<0.001) even with NH3 added (Figure 1) providing strong evidence for emissions being associated with bacteria on the leaves. Control plants did emit N2O suggesting there was either sufficient NH3 available for bacterially generated emissions and/or other plant-based mechanisms were involved (Bowatte et al., 2014).Open in a separate windowFigure 1Effect of an elevated NH3 atmosphere and surface sterilisation of leaves on leaf N2O emissions measured over 1-h periods on three occasions during the day. Values are means (s.e.m.), where n=7.The major AOB species identified was Nitrosospira strain III7 that has been previously shown to produce N2O (Jiang and Bakken, 1999). We measured 109 AOB cells per m2 ryegrass leaf, assuming a specific leaf area of 250 cm2 g−1 leaf.The rate of production of N2O (0.1–0.17 mg N2O-N per m2 leaf area per hour) can be translated to a field situation using the leaf area index (LAI)—1 m2 leaf per m2 ground would be an LAI of 1. LAI in a pasture can vary from <1 to >6 depending on the management (for example, Orr et al., 1988). At LAI of 1, the AOB leaf emission rate would equate to a N2O emission rate of about 0.1–0.3 mg N2O-N per m2 ground per hour. By comparison, the emission rates measured after dairy cattle urine (650 kg N ha−1) was applied to freely and poorly drained soil were 0.024–1.55 and 0.048–3.33 mg N2O-N per m2 ground per hour, respectively (Li and Kelliher, 2005).The fraction of the NH3 that was converted to N2O by the leaf AOB was 0.02–0.42% (mean 0.12%). The mean value is close to that measured for Nitrosospira strains including strain III7 isolated from acidic, loamy and sandy soils where values ranged from 0.07 to 0.10% (Jiang and Bakken, 1999). This is good evidence that the AOB on leaves have the capacity to produce N2O at the same rate as AOB in soils. We do not suggest that leaf AOB will produce as much N2O as soil microbes; however, because leaf AOB have access to a source of substrate—volatilised NH3—that is unavailable to soil microbes and may constitute 26% (Laubach et al., 2013) to 40% (Carran et al., 1982) of the N deposited in the urine, N2O emissions from these aboveground AOB are additional to soil emissions. Further research is required to identify the situations in which leaf AOB contribute to total emissions and to quantify this contribution.  相似文献   
82.
RcnA is an efflux pump responsible for Ni and Co detoxification in Escherichia coli. The expression of rcnA is induced by Ni and Co via the metallo-regulator RcnR. In the present work, the functioning of the promoter-operator region of rcnR and rcnA was investigated using primer extension and DNAse I footprinting experiments. We show that the promoters of rcnR and rcnA are convergent and that apo-RcnR binds on symmetrically located sequences in this intergenic region. Moreover, RcnR DNA binding is specifically modulated by one Ni or Co equivalent and not by other metals. In addition to rcnA, RcnR controls expression of its own gene in response to Ni and Co, but the two genes are differentially expressed.  相似文献   
83.
84.

Introduction  

A novel system that combines a compact mobile instrument and Internet communications is presented in this paper for remote evaluation of tremors. The system presents a high potential application in Parkinson's disease and connects to the Internet through a TCP/IP protocol. Tremor transduction is carried out by accelerometers, and the data processing, presentation and storage were obtained by a virtual instrument. The system supplies the peak frequency (fp), the amplitude (Afp) and power in this frequency (Pfp), the total power (Ptot), and the power in low (1-4 Hz) and high (4-7 Hz) frequencies (Plf and Phf, respectively).  相似文献   
85.
Auxology has developed from mere describing child and adolescent growth into a vivid and interdisciplinary research area encompassing human biologists, physicians, social scientists, economists and biostatisticians. The meeting illustrated the diversity in auxology, with the various social, medical, biological and biostatistical aspects in studies on child growth and development.  相似文献   
86.
In Escherichia coli, protein folding is undertaken by three distinct sets of chaperones, the DnaK-DnaJ and GroEL-GroES systems and the trigger factor (TF). TF has been proposed to be the first chaperone to interact with the nascent polypeptide chain as it emerges from the tunnel of the 70S ribosome and thus probably plays an important role in co-translational protein folding. We have made complexes with deuterated ribosomes (50S subunits and 70S ribosomes) and protated TF and determined the TF binding site on the respective complexes using the neutron scattering technique of spin-contrast variation. Our data suggest that the TF binds in the form of a homodimer. On both the 50S subunit and the 70S ribosome, the TF position is in proximity to the tunnel exit site, near ribosomal proteins L23 and L29, located on the back of the 50S subunit. The positions deviate from one another, such that the position on the 70S ribosome is located slightly further from the tunnel than that determined for the 50S subunit alone. Nevertheless, from both determined positions interaction between TF and a short nascent chain of 57 amino acid residues would be plausible, compatible with a role for TF participation in co-translational protein folding.  相似文献   
87.
The analysis of an A. brasilense Tn5 mutant shows significant phenotypic differences compared to the wild type isogenic strain. The transposon was located disrupting an open reading frame of 840 bp (ORF280) which exhibits similarity to the universal stress protein (USP) family. The USP family encompasses proteins that are expressed as a response to cell growth arrest. The mutant revealed a pleiotrophic phenotype with respect to different stress conditions. The ORF mutation results in an increased sensitivity of cells to carbon starvation and heat-shock treatment. However, the mutant strain displays a higher tolerance to oxidative stress agents. In contrast to the isogenic parent strain, colonies of the mutant are weakly stained by Congo red added to solid media and are impaired in flocculation. Scanning electron micrographs revealed that the mutant lacks part of the surface material present as a thick layer of exopolysaccharides on the surface of the wild type cells. The pleiotrophic phenotype revealed for this mutant and the similarity of the C-terminal region of ORF280 to UspA from E. coli indicates that the A. brasilense ORF280 may be a Usp-like protein. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
88.
Disruption of an open reading frame (ORF) of 840 bp (280 amino acids; ORF280) in an Azospirillum brasilense Tn5 mutant resulted in a pleiotrophic phenotype. Besides an enhanced N(2)-fixing capacity and altered expression pattern of a nifH-gusA fusion, growth on the charged polar amino acids glutamate and arginine was severely affected. ORF280, similar to previously identified ORFs present in Bradyrhizobium japonicum (ORF277), Paracoccus denitrificans (ORF278) and Rhodobacter capsulatus (ORF277), exhibits in its C-terminus a significant similarity with the recently defined family of universal stress proteins.  相似文献   
89.
Both top-down and bottom-up processes are common in terrestrial ecosystems, but how these opposing forces interact and vary over time is poorly understood. We tested the variation of these processes over seasonal time in a natural temperate zone grassland, a field site characterized by strong seasonal changes in abiotic and biotic conditions. Separate factorial experiments manipulating nutrients and cursorial spiders were performed in the wet and dry seasons. We also performed a water-addition experiment during the summer (dry season) to determine the degree of water limitation during this time. In the spring, nutrient addition increased plant growth and carnivore abundance, indicating a bottom-up control process. Among herbivores, sap-feeders were significantly enhanced while grazers significantly declined resulting in no net change in herbivore abundance. In the summer, water limitation was predominant increasing plants and all herbivores while nutrient (N) effects were non-significant. Top-down processes were present only in the spring season and only impacted the guild of grazing herbivores. These results show that bottom-up limitation is present throughout the season in this grassland, although the specific limiting resource changes as the season progresses. Bottom-up processes affected all trophic levels and many different guilds, while top-down effects were limited to a select group of herbivores and did not extend to the plant trophic level. Our results show that the relative strengths of top-down and bottom-up processes can shift over relatively short periods of time in habitats with a strong seasonal component.  相似文献   
90.
The microbial communities in solar salterns and a soda lake have been characterized using two techniques: BIOLOG, to estimate the metabolic potential, and amplicon length heterogeneity analysis, to estimate the molecular diversity of these communities. Both techniques demonstrated that the halophilic Bacteria and halophilic Archaea populations in the Eilat, Israel saltern are dynamic communities with extensive metabolic potentials and changing community structures. Halophilic Bacteria were detected in Mono Lake and the lower salinity ponds at the Shark Bay saltern in Western Australia, except when the crystallizer samples were stressed by exposure to Acid Green Dye #9899. At Shark Bay, halophilic Archaea were found only in the crystallizer samples. These data confirm both the metabolic diversity and the phylogenetic complexity of the microbial communities and assert the need to develop more versatile media for the cultivation of the diversity of bacteria in hypersaline environments. Journal of Industrial Microbiology & Biotechnology (2002) 28, 48–55 DOI: 10.1038/sj/jim/7000175 Received 20 May 2001/ Accepted in revised form 15 June 2001  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号