首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   150篇
  免费   16篇
  166篇
  2023年   3篇
  2021年   4篇
  2019年   2篇
  2016年   3篇
  2015年   10篇
  2013年   8篇
  2012年   9篇
  2011年   6篇
  2010年   6篇
  2009年   6篇
  2008年   7篇
  2007年   10篇
  2006年   6篇
  2005年   4篇
  2004年   4篇
  2003年   4篇
  2002年   3篇
  2001年   5篇
  2000年   3篇
  1999年   3篇
  1994年   1篇
  1993年   1篇
  1992年   4篇
  1991年   1篇
  1989年   1篇
  1987年   1篇
  1985年   1篇
  1983年   2篇
  1982年   1篇
  1978年   2篇
  1973年   2篇
  1972年   1篇
  1971年   2篇
  1970年   1篇
  1969年   2篇
  1968年   3篇
  1967年   2篇
  1966年   1篇
  1965年   2篇
  1963年   4篇
  1961年   1篇
  1960年   1篇
  1958年   1篇
  1955年   2篇
  1937年   1篇
  1936年   1篇
  1934年   2篇
  1933年   1篇
  1932年   6篇
  1875年   1篇
排序方式: 共有166条查询结果,搜索用时 15 毫秒
141.
To identify genes important for taste receptor cell function, we analyzed the sequences and expression patterns of clones isolated from a mouse taste receptor cell-enriched cDNA library. Here, we report the analyses of two novel genes, Gpr113 and Trcg1. Gpr113 encodes a G-protein-coupled receptor belonging to family 2B, members of which are characterized by having long N-terminal, extracellular domains. The predicted N-terminal extracellular domain of GPR113 contains 696 amino acids with two functional domains, a peptide hormone-binding domain and a G-protein-coupled receptor proteolytic site. Expression analyses indicate that Gpr113 expression is highly restricted to a subset of taste receptor cells. TRCG1 is also selectively expressed in a subset of taste receptor cells. Trcg1 is alternatively spliced and encodes Trcg1 isoforms of 209 and 825 amino acids. BLAST searches of genomic sequences indicate that a putative homolog of Trcg1 resides on human chromosome 15q22.  相似文献   
142.
143.
Leukocyte urokinase plasminogen activator receptors (uPARs) cluster at adhesion interfaces and at migratory fronts where they participate in adhesion, chemotaxis, and proteolysis. uPAR aggregation triggers activation signaling even though this glycolipid-anchored protein must associate with membrane-spanning proteins to access the cell interior. This study demonstrates a novel partnership between uPAR and L-selectin in human polymorphonuclear neutrophils. Fluorescence resonance energy transfer demonstrated a direct physical association between uPAR and L-selectin. To examine the role of L-selectin in uPAR-mediated signaling, uPAR was cross-linked and intracellular Ca(2+) concentrations were measured by spectrofluorometry. A mAb reactive against the carbohydrate binding domain (CBD) of L-selectin substantially inhibited uPAR-mediated Ca(2+) mobilization, whereas mAbs against the beta(2) integrin complement receptor 3 (CR3), another uPAR-binding adhesion protein, had no effect. Similarly, fucoidan, a sulfated polysaccharide that binds to L-selectin CBD, inhibited the Ca(2+) signal. We conclude that uPAR associates with the CBD region of L-selectin to form a functional signaling complex.  相似文献   
144.
Eating raw oysters can come with serious health risks, as oysters can potentially contain bacteria of the Vibrio genus that cause food-borne infections. Vibrio bacteria are concentrated by oysters and, when consumed, infections can result with severe symptoms such as diarrhoea, lesions on the extremities, or even death. Vibrio spp. concentrations are strongly affected by season, location, and other factors such as temperature and salinity. Previous research in North Carolina oysters has been conducted on wild and farmed oysters but not at the same time. Farmed, or aquaculture raised, oysters are considerably different from wild oysters and could possibly pose different health risks. Farmed oysters are handled, raised from seed, and often grown using suspended grow-out systems called ‘floating cages’. Therefore, farmed oysters can be grown at the surface of the estuary, while wild oysters typically grow at the bottom of the water column. This project compared the concentrations of Vibrio spp. in suspended, farm-grown oysters and wild oysters at three sites, using a paired approach with farmed and wild oysters sampled in proximity. An important part of this comparison was identifying pathogenicity of the bacteria isolated from the samples. Distinction was made between off- and on-bottom farming. Interestingly, on-bottom oysters had more pathogenic V. vulnificus than off-bottom oysters.  相似文献   
145.
In the last decade, treatment for castration-resistant prostate cancer has changed markedly, impacting symptom control and longevity for patients. However, a large proportion of cases progress despite androgen deprivation therapy and chemotherapy, while still being fit enough for several more lines of treatment. Overstimulation of the androgen receptor (AR) activity is the main driver of this cancer. Targeting biological functions of the AR or its co-regulators has proven very effective in this disease and led to the development of several highly effective drugs targeting the AR signalling axis. Drugs such as enzalutamide demonstrated that the improvement in anti-tumour efficacy is closely correlated with an affinity for the AR and its activity and have established the paradigm that AR remains activity in aggressive disease. However, as importantly, key insights into mechanisms of resistance are guiding the development of the next generation of AR-targeted drugs. This review outlines the historical development of these highly specific agents, their mechanism of action in the context of defective AR activity, and explores the potential for the upcoming next-generation AR inhibitors (ARI) for prostate cancer by targeting the alternative domains of AR, rather than by the conventional ligand-binding domain approach. There is huge potential in these approaches to develop new drugs with high clinical activity and further improve the outlook for patients.  相似文献   
146.
DNA extraction bias is a frequently cited but poorly understood limitation of molecular characterizations of environmental microbial communities. To assess the bias of a commonly used soil DNA extraction kit, we varied the cell lysis protocol and conducted multiple extractions on subsamples of clay, sand, and organic soils. DNA, as well as bacterial and fungal ribosomal gene copies as measured by quantitative PCR, continued to be isolated in successive extractions. When terminal restriction fragment length polymorphism was used, a significant shift in community composition due to extraction bias was detected for bacteria but not for fungi. Pyrosequencing indicated that the relative abundances of sequences from rarely cultivated groups such as Acidobacteria, Gemmatimonades, and Verrucomicrobia were higher in the first extraction than in the sixth but that the reverse was true for Proteobacteria and Actinobacteria. This suggests that the well-known phylum-level bacterial cultivation bias may be partially exaggerated by DNA extraction bias. We conclude that bias can be adequately reduced in many situations by pooling three successive extractions, and additional measures should be considered when divergent soil types are compared or when comprehensive community analysis is necessary.The vast majority of soil bacteria (1, 7, 27) and fungi (13, 29) cannot be cultured via traditional laboratory techniques and must be identified using molecular methods. Successful characterization of microbial communities is therefore often dependent on DNA that is extracted from the environment. However, extraction of high-quality DNA from soil can be problematic (8, 11, 22, 26). Commercial DNA extraction kits are now commonly used in the assessment of taxonomic and functional diversity, community composition, and population abundance (e.g., references 19, 21, 23, 25, and 31). Studies comparing various kits (18, 32) or comparing commercial kits to other methods (2, 10, 24) have shown that DNA yield and purity vary depending on methodology and soil type. While these comparative studies are valuable, it is still unclear to what extent these protocols yield genomic DNA representative of the microbial community found within soil.Our objective in this study was to optimize and assess the bias of a widely used commercial soil DNA extraction kit. We hypothesized that cell lysis would be enhanced and DNA would be removed from adsorption sites by conducting multiple extractions on a single sample, thereby increasing genomic DNA yield and obtaining a more complete survey of microbial taxa. This hypothesis was tested by (i) varying the extraction protocol and measuring DNA yield for three soils with differing characteristics and (ii) examining extraction bias in the genomic DNA obtained from successive extractions by using an improved method. Analytical replicates rather than biological replicates were used in order to focus strictly on variation and bias introduced through methodology, although multiple soil types were analyzed to determine whether biases detected were consistent.  相似文献   
147.
Anthropogenic release of biologically available N has increased atmospheric N deposition in forest ecosystems, which may slow decomposition by reducing the lignolytic activity of white-rot fungi. We investigated the potential for atmospheric N deposition to reduce the abundance and alter the composition of lignolytic basidiomycetes in a regional network of four northern hardwood forest stands receiving experimental NO3 deposition (30 kg NO3 −N ha−1 year−1) for a decade. To estimate the abundance of basidiomycetes with lignolytic potential, we used PCR primers targeting laccase (polyphenol oxidase) and quantitative fluorescence PCR to estimate gene copy number. Natural variation in laccase gene size permitted use of length heterogeneity PCR to profile basidiomycete community composition across two sampling dates in forest floor and mineral soil. Although past work has identified significant and consistent negative effects of NO3 deposition on lignolytic enzyme activity, microbial biomass, soil respiration, and decomposition rate, we found no consistent effect of NO3 deposition on basidiomycete laccase gene abundance or community profile. Rather, laccase abundance under NO3 deposition was lower (−52%), higher (+223%), or unchanged, depending on stand. Only a single stand exhibited a significant change in basidiomycete laccase gene profile. Basidiomycete laccase genes occurring in mineral soil were a subset of the genes observed in the forest floor. Moreover, significant effects on laccase abundance were confined to the forest floor, suggesting that species composition plays some role in determining how lignolytic basidiomycetes are affected by N deposition. Community profiles differed between July and October sampling dates, and basidiomycete communities sampled in October had lower laccase gene abundance in the forest floor, but higher laccase abundance in mineral soil. Although experimental N deposition significantly suppresses lignolytic activity in these forests, this change is not related to the abundance or community composition of basidiomycete fungi with laccase genes. Understanding the expression of laccases and other lignolytic enzymes by basidiomycete fungi and other lignin-decaying organisms appears to hold promise for explaining the consistent decline in lignolytic activity elicited by experimental N deposition. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
148.
There is an urgent need to identify modifiable environmental risk factors that reduce the incidence of Alzheimer''s disease (AD). The B‐like vitamin choline plays key roles in body‐ and brain‐related functions. Choline produced endogenously by the phosphatidylethanolamine N‐methyltransferase protein in the liver is not sufficient for adequate physiological functions, necessitating daily dietary intake. ~90% of Americans do not reach the recommended daily intake of dietary choline. Thus, it''s imperative to determine whether dietary choline deficiency increases disease outcomes. Here, we placed 3xTg‐AD, a model of AD, and non‐transgenic (NonTg) control mice on either a standard laboratory diet with sufficient choline (ChN; 2.0 g/kg choline bitartrate) or a choline‐deficient diet (Ch‐; 0.0 g/kg choline bitartrate) from 3 to 12 (early to late adulthood) months of age. A Ch‐ diet reduced blood plasma choline levels, increased weight, and impaired both motor function and glucose metabolism in NonTg mice, with 3xTg‐AD mice showing greater deficits. Tissue analyses showed cardiac and liver pathology, elevated soluble and insoluble Amyloid‐β and Thioflavin S structures, and tau hyperphosphorylation at various pathological epitopes in the hippocampus and cortex of 3xTg‐AD Ch‐ mice. To gain mechanistic insight, we performed unbiased proteomics of hippocampal and blood plasma samples. Dietary choline deficiency altered hippocampal networks associated with microtubule function and postsynaptic membrane regulation. In plasma, dietary choline deficiency altered protein networks associated with insulin metabolism, mitochondrial function, inflammation, and fructose metabolic processing. Our data highlight that dietary choline intake is necessary to prevent systems‐wide organ pathology and reduce hallmark AD pathologies.  相似文献   
149.
Rapid molecular testing methods are poised to replace many of the conventional, culture-based tests currently used in fields such as water quality and food science. Rapid qPCR methods have the benefit of being faster than conventional methods and provide a means to more accurately protect public health. However, many scientists and technicians in water and food quality microbiology laboratories have limited experience using these molecular tests. To ensure that practitioners can use and implement qPCR techniques successfully, we developed a week long workshop to provide hands-on training and exposure to rapid molecular methods for water quality management. This workshop trained academic professors, government employees, private industry representatives, and graduate students in rapid qPCR methods for monitoring recreational water quality. Attendees were immersed in these new methods with hands-on laboratory sessions, lectures, and one-on-one training. Upon completion, the attendees gained sufficient knowledge and practice to teach and share these new molecular techniques with colleagues at their respective laboratories. Key findings from this workshop demonstrated: 1) participants with no prior experience could be effectively trained to conduct highly repeatable qPCR analysis in one week; 2) participants with different desirable outcomes required exposure to a range of different platforms and sample processing approaches; and 3) the collaborative interaction amongst newly trained practitioners, workshop leaders, and members of the water quality community helped foster a cohesive cohort of individuals which can advocate powerful cohort for proper implementation of molecular methods.  相似文献   
150.
Split‐root experiments were conducted to test the hypothesis that adjustments in lateral root initiation, as might occur in response to localized soil conditions, are determined by the sugar content of the root and do not depend on changes in the import of phloem‐translocated phytohormones. Wheat ( Triticum aesticum L. cv. Alexandria) seedlings were grown in hydroponics with their seminal roots divided between two compartments within the culture vessel. Two seminal roots of treated plants were supplied with standard nutrient solution supplemented with 50 m M glucose, whilst the remaining three roots received nutrient solution without glucose. Control plants had their roots divided in the same ratio, but both 'halves' received nutrient solution without glucose. Feeding glucose to one 'half' of the root system increased the frequency (number per unit length) of lateral root primordia in the fed axes. The increase was first observed 15 h after the start of treatment and was located within the apical 30 mm of root. At this time there was no significant treatment effect on the frequency of primordia in non‐fed axes. The enhanced initiation of lateral roots in glucose‐fed root tips was associated with an increase in their concentration of glucose and sucrose plus low molecular mass fructans. In contrast, there was a reduction in partitioning of 14C‐photosynthate to these root tips compared to the non‐fed roots of treated plants and controls. The results indicate that lateral root initiation can be stimulated by sugars in the absence of an increase in phloem translocation. It is proposed that proliferation of lateral roots in response to localized soil conditions, such as nutrient patches, may be signalled by an increase in sugar content of the tissue, rather than an altered flux of phytohormones or other material co‐transported with sucrose in the phloem.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号