首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2360篇
  免费   339篇
  国内免费   1篇
  2700篇
  2018年   19篇
  2016年   40篇
  2015年   52篇
  2014年   62篇
  2013年   76篇
  2012年   122篇
  2011年   110篇
  2010年   57篇
  2009年   43篇
  2008年   85篇
  2007年   97篇
  2006年   84篇
  2005年   80篇
  2004年   79篇
  2003年   77篇
  2002年   65篇
  2001年   68篇
  2000年   68篇
  1999年   63篇
  1998年   25篇
  1997年   36篇
  1996年   29篇
  1995年   28篇
  1994年   28篇
  1993年   27篇
  1992年   49篇
  1991年   50篇
  1990年   46篇
  1989年   51篇
  1988年   62篇
  1987年   46篇
  1986年   54篇
  1985年   51篇
  1984年   40篇
  1983年   42篇
  1982年   33篇
  1981年   27篇
  1980年   26篇
  1979年   45篇
  1978年   28篇
  1977年   34篇
  1976年   25篇
  1975年   24篇
  1974年   18篇
  1973年   37篇
  1972年   28篇
  1971年   34篇
  1970年   27篇
  1969年   20篇
  1968年   26篇
排序方式: 共有2700条查询结果,搜索用时 15 毫秒
951.
Membrane proteins transported to the yeast vacuole can have two fates. Some reach the outer vacuolar membrane, whereas others enter internal vesicles, which form in late endosomes, and are ultimately degraded. The vacuolar SNAREs Nyv1p and Vam3p avoid this fate by using the AP-3-dependent pathway, which bypasses late endosomes, but the endosomal SNARE Pep12p must avoid it more directly. Deletion analysis revealed no cytoplasmic sequences necessary to prevent the internalization of Pep12p in endosomes. However, introduction of acidic residues into the cytoplasmic half of the transmembrane domain created a dominant internalization signal. In other contexts, this same feature diverted proteins from the Golgi to endosomes and slowed their exit from the endoplasmic reticulum. The more modestly polar transmembrane domains of Sec12p and Ufe1p, which normally serve to hold these proteins in the endoplasmic reticulum, also cause Pep12p to be internalized, as does that of the vacuolar protein Cps1p. It seems that quality control mechanisms recognize polar transmembrane domains at multiple points in the secretory and endocytic pathways and in endosomes sort proteins for subsequent destruction in the vacuole. These mechanisms may minimize the damaging effects of abnormally exposed polar residues while being exploited for the localization of some normal proteins.  相似文献   
952.
BackgroundBreast cancer patients who are resistant to neoadjuvant chemotherapy (NeoCT) have a poor prognosis. There is a pressing need to develop in vivo models of chemo resistant tumors to test novel therapeutics. We hypothesized that patient-derived breast cancer xenografts (BCXs) from chemo- naïve and chemotherapy-exposed tumors can provide high fidelity in vivo models for chemoresistant breast cancers.MethodsPatient tumors and BCXs were characterized with short tandem repeat DNA fingerprinting, reverse phase protein arrays, molecular inversion probe arrays, and next generation sequencing.ResultsForty-eight breast cancers (24 post-chemotherapy, 24 chemo-naïve) were implanted and 13 BCXs were established (27%). BCX engraftment was higher in TNBC compared to hormone-receptor positive cancer (53.8% vs. 15.6%, p = 0.02), in tumors from patients who received NeoCT (41.7% vs. 8.3%, p = 0.02), and in patients who had progressive disease on NeoCT (85.7% vs. 29.4%, p = 0.02). Twelve patients developed metastases after surgery; in five, BCXs developed before distant relapse. Patients whose tumors developed BCXs had a lower recurrence-free survival (p = 0.015) and overall survival (p<0.001). Genomic losses and gains could be detected in the BCX, and three models demonstrated a transformation to induce mouse tumors. However, overall, somatic mutation profiles including potential drivers were maintained upon implantation and serial passaging. One BCX model was cultured in vitro and re-implanted, maintaining its genomic profile.ConclusionsBCXs can be established from clinically aggressive breast cancers, especially in TNBC patients with poor response to NeoCT. Future studies will determine the potential of in vivo models for identification of genotype-phenotype correlations and individualization of treatment.  相似文献   
953.
Cytosine deaminase (CD) catalyzes the deamination of cytosine and is only present in prokaryotes and fungi, where it is a member of the pyrimidine salvage pathway. The enzyme is of interest both for antimicrobial drug design and gene therapy applications against tumors. The structure of Saccharomyces cerevisiae CD has been determined in the presence and absence of a mechanism-based inhibitor, at 1.14 and 1.43 A resolution, respectively. The enzyme forms an alpha/beta fold similar to bacterial cytidine deaminase, but with no similarity to the alpha/beta barrel fold used by bacterial cytosine deaminase or mammalian adenosine deaminase. The structures observed for bacterial, fungal, and mammalian nucleic acid deaminases represent an example of the parallel evolution of two unique protein folds to carry out the same reaction on a diverse array of substrates.  相似文献   
954.
Chen SS  Black CC 《Plant physiology》1983,71(2):373-378
The diurnal variations in volume and in specific weight were determined for green stems and leaves of Crassulacen acid metabolism (CAM) plants. Volume changes were measured by a water displacement method. Diurnal variations occurred in the volume of green CAM tissues. Their volume increased early in the light period reaching a maximum about mid-day, then the volume decreased to a minimum near midnight. The maximum volume increase each day was about 2.7% of the total volume. Control leaves of C3 and C4 plants exhibited reverse diurnal volume changes of 0.2 to 0.4%. The hypothesis is presented and supported that green CAM tissues should exhibit a diurnal increase in volume due to the increase of internal gas pressure from CO2 and O2 when their stomata are closed. Conversely, the volume should decrease when the gas pressure is decreased.

The second hypothesis presented and supported was that the specific weight (milligrams of dry weight per square centimeter of green surface area) of green CAM tissues should increase at night due to the net fixation of CO2. Green CAM tissues increased their specific weight at night in contrast to control C3 and C4 leaves which decreased their specific weight at night. With Kalanchoë daigremontiana leaves, the calculated increase in specific leaf weight at night based on estimates of carbohydrate available for net CO2 fixation was near 6% and the measured increase in specific leaf weight was 6%.

Diurnal measurements of CAM tissue water content were neither coincident nor reciprocal with their diurnal patterns of either volume or specific weight changes.

  相似文献   
955.
Cannabinoid CB1 receptor antagonists exhibit pharmacologic properties favorable for the treatment of metabolic disease. CP-945,598 (1-[9-(4-chlorophenyl)-8-(2-chlorophenyl)-9H-purin-6-yl]-4-ethylamino piperidine-4-carboxylic acid amide hydrochloride) is a recently discovered selective, high affinity, competitive CB1 receptor antagonist that inhibits both basal and cannabinoid agonist-mediated CB1 receptor signaling in vitro and in vivo. CP-945,598 exhibits sub-nanomolar potency at human CB1 receptors in both binding (Ki = 0.7 nM) and functional assays (Ki = 0.2 nM). The compound has low affinity (Ki = 7600 nM) for human CB2 receptors. In vivo, CP-945,598 reverses four cannabinoid agonist-mediated CNS-driven responses (hypo-locomotion, hypothermia, analgesia, and catalepsy) to a synthetic cannabinoid receptor agonist. CP-945,598 exhibits dose and concentration-dependent anorectic activity in two models of acute food intake in rodents, fast-induced re-feeding and spontaneous, nocturnal feeding. CP-945,598 also acutely stimulates energy expenditure in rats and decreases the respiratory quotient indicating a metabolic switch to increased fat oxidation. CP-945,598 at 10 mg/kg promoted a 9%, vehicle adjusted weight loss in a 10 day weight loss study in diet-induced obese mice. Concentration/effect relationships combined with ex vivo brain CB1 receptor occupancy data were used to evaluate efficacy in behavioral, food intake, and energy expenditure studies. Together, these in vitro, ex vivo, and in vivo data indicate that CP-945,598 is a novel CB1 receptor competitive antagonist that may further our understanding of the endocannabinoid system.  相似文献   
956.
The presence of an energy-dependent calcium uptake system in adipocyte endoplasmic reticulum (D. E. Bruns, J. M. McDonald, and L. Jarett, 1976, J. Biol. Chem.251, 7191–7197) suggested that this organelle might possess a calcium-stimulated transport ATPase. This report describes two types of ATPase activity in isolated microsomal vesicles: a nonspecific, divalent cation-stimulated ATPase (Mg2+-ATPase) of high specific activity, and a specific, calcium-dependent ATPase (Ca2+ + Mg2+-ATPase) of relatively low activity. Mg2+-ATPase activity was present in preparations of mitochondria and plasma membranes as well as microsomes, whereas the (Ca2+ + Mg2+)-ATPase activity appeared to be localized in the endoplasmic reticulum component of the microsomal fraction. Characterization of microsomal Mg2+-ATPase activity revealed apparent Km values of 115 μm for ATP, 333 μm for magnesium, and 200 μm for calcium. Maximum Mg2+-ATPase activity was obtained with no added calcium and 1 mm magnesium. Potassium was found to inhibit Mg2+-ATPase activity at concentrations greater than 100 mm. The energy of activation was calculated from Arrhenius plots to be 8.6 kcal/mol. Maximum activity of microsomal (Ca2+ + Mg2+)-ATPase was 13.7 nmol 32P/mg/min, which represented only 7% of the total ATPase activity. The enzyme was partially purified by treatment of the microsomes with 0.09% deoxycholic acid in 0.15 m KCl which increased the specific activity to 37.7 nmol 32P/mg/min. Characterization of (Ca2+ + Mg2+)-ATPase activity in this preparation revealed a biphasic dependence on ATP with a Hill coefficient of 0.80. The apparent Kms for magnesium and calcium were 125 and 0.6–1.2 μm, respectively. (Ca2+ + Mg2+)-ATPase activity was stimulated by potassium with an apparent Km of 10 mm and maximum activity reached at 100 mm potassium. The energy of activation was 21.5 kcal/mol. The kinetics and ionic requirements of (Ca2+ + Mg2+)-ATPase are similar to those of the (Ca2+ + Mg2+)-ATPase in sarcoplasmic reticulum. These results suggest that the (Ca2+ + Mg2+)-ATPase of adipocyte endoplasmic reticulum functions as a calcium transport enzyme.  相似文献   
957.
In studies carried on in bacteriological media with selected cultures, definite repressive effects were noted on the growth of the Staphylococcus population by a mixture of saprophytic, psychrophilic bacterial species. This repressive effect became more pronounced as the relative proportion of the bacterial population which was staphylococcal became smaller. A varied saprophytic bacterial flora of some numbers apparently would offer definite protection to foods through repression of staphylococcal growth and by rendering the food inedible before the rise of appreciable numbers of staphylococci. It would appear that at the optimal temperature for staphylococcal growth, staphylococci could multiply rapidly in the mixed population due to the comparative shortness of the generation time of this species and because of the lengthened lag phase of the saprophytic bacterial species at this elevated temperature, especially when only cultures having psychrophilic characteristics were present. This temperature is substantially above that encountered in practical experience. With the passage of time, the staphylococcal population was completely overgrown by the saprohytes present. This effect might be eliminated in the presence of psychrophilic and mesophilic, saprophytic species. The repressive effect of competition by saprophytic, psychrophilic organisms is extremely effective up to room temperature on the staphylococcal population. Even when significant staphylococcal populations were achieved in the artificial media, such tremendous numbers of saprophytes were obtained either earlier or at the same time so that a frozen food containing this population would be organoleptically unacceptable due to the degradative action of enzymes from the saprophytic psychrophile population.  相似文献   
958.
Evolutionary Ecology - Biological invasions represent a useful experimental system with which evolutionary processes can be investigated in a contemporary timespan. One process that can be studied...  相似文献   
959.
Pyrethroids are one of the few classes of insecticides available to control Aedes aegypti, the major vector of dengue, chikungunya, and Zika viruses. Unfortunately, evolving mechanisms of pyrethroid resistance in mosquito populations threaten our ability to control disease outbreaks. Two common pyrethroid resistance mechanisms occur in Ae. aegypti: 1) knockdown resistance, which involves amino acid substitutions at the pyrethroid target site—the voltage-gated sodium channel (VGSC)—and 2) enhanced metabolism by detoxification enzymes. When a heterogeneous population of mosquitoes is exposed to pyrethroids, different responses occur. During exposure, a proportion of mosquitoes exhibit immediate knockdown, whereas others are not knocked-down and are designated knockdown resistant (kdr). When these individuals are removed from the source of insecticide, the knocked-down mosquitoes can either remain in this status and lead to dead or recover within a few hours. The proportion of these phenotypic responses is dependent on the pyrethroid concentration and the genetic background of the population tested. In this study, we sequenced and performed pairwise genome comparisons between kdr, recovered, and dead phenotypes in a pyrethroid-resistant colony from Tapachula, Mexico. We identified single-nucleotide polymorphisms (SNPs) associated with each phenotype and identified genes that are likely associated with the mechanisms of pyrethroid resistance, including detoxification, the cuticle, and insecticide target sites. We identified high association between kdr and mutations at VGSC and moderate association with additional insecticide target site, detoxification, and cuticle protein coding genes. Recovery was associated with cuticle proteins, the voltage-dependent calcium channel, and a different group of detoxification genes. We provide a list of detoxification genes under directional selection in this field-resistant population. Their functional roles in pyrethroid metabolism and their potential uses as genomic markers of resistance require validation.  相似文献   
960.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号