首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2350篇
  免费   338篇
  国内免费   1篇
  2689篇
  2018年   19篇
  2016年   40篇
  2015年   52篇
  2014年   62篇
  2013年   76篇
  2012年   122篇
  2011年   110篇
  2010年   57篇
  2009年   42篇
  2008年   85篇
  2007年   95篇
  2006年   84篇
  2005年   80篇
  2004年   78篇
  2003年   77篇
  2002年   63篇
  2001年   68篇
  2000年   68篇
  1999年   63篇
  1998年   25篇
  1997年   36篇
  1996年   29篇
  1995年   28篇
  1994年   28篇
  1993年   27篇
  1992年   49篇
  1991年   50篇
  1990年   45篇
  1989年   51篇
  1988年   62篇
  1987年   44篇
  1986年   54篇
  1985年   51篇
  1984年   40篇
  1983年   42篇
  1982年   33篇
  1981年   27篇
  1980年   26篇
  1979年   45篇
  1978年   28篇
  1977年   34篇
  1976年   25篇
  1975年   24篇
  1974年   18篇
  1973年   37篇
  1972年   28篇
  1971年   33篇
  1970年   27篇
  1969年   20篇
  1968年   26篇
排序方式: 共有2689条查询结果,搜索用时 15 毫秒
121.
Cranberry juice has long been believed to benefit the prevention and treatment of urinary tract infections (UTIs). As the first step in the development of infection, bacterial adhesion is of great research interest, yet few studies have addressed molecular level adhesion in this context. P-fimbriated Escherichia coli play a major role in the development of a serious type of UTI, acute pyelonephritis. Experiments were conducted to investigate the molecular-scale effects of cranberry juice on two E. coli strains: HB101, which has no fimbriae, and the mutant HB101pDC1 which expresses P-fimbriae. Atomic force microscopy (AFM) was used to investigate both bacterial surface characteristics and adhesion forces between a probe surface (silicon nitride) and the bacteria, providing a direct evaluation of bacterial adhesion and interaction forces. Cranberry juice affected bacterial surface polymer and adhesion behavior after a short exposure period (<3 h). Cranberry juice affected the P-fimbriated bacteria by decreasing the adhesion forces between the bacterium and tip and by altering the conformation of the surface macromolecules on E. coli HB101pDC1. The equilibrium length of polymer (P-fimbriae) on this bacterium decreased from approximately 148 to approximately 48 nm upon being exposed to cranberry juice. Highly acidic conditions were not necessary for the prevention of bacterial adhesion, since neutralization of cranberry juice solutions to pH = 7.0 allowed us to observe differences in adhesion between the E. coli strains. Our results demonstrate molecular-level changes in the surfaces of P-fimbriated E. coli upon exposure to neutralized cranberry juice.  相似文献   
122.
The use of herbicide-resistant (HR) Clearfield rice (Oryza sativa) to control weedy rice has increased in the past 12 years to constitute about 60% of rice acreage in Arkansas, where most U.S. rice is grown. To assess the impact of HR cultivated rice on the herbicide resistance and population structure of weedy rice, weedy samples were collected from commercial fields with a history of Clearfield rice. Panicles from each weedy type were harvested and tested for resistance to imazethapyr. The majority of plants sampled had at least 20% resistant offspring. These resistant weeds were 97 to 199 cm tall and initiated flowering from 78 to 128 d, generally later than recorded for accessions collected prior to the widespread use of Clearfield rice (i.e. historical accessions). Whereas the majority (70%) of historical accessions had straw-colored hulls, only 30% of contemporary HR weedy rice had straw-colored hulls. Analysis of genotyping-by-sequencing data showed that HR weeds were not genetically structured according to hull color, whereas historical weedy rice was separated into straw-hull and black-hull populations. A significant portion of the local rice crop genome was introgressed into HR weedy rice, which was rare in historical weedy accessions. Admixture analyses showed that HR weeds tend to possess crop haplotypes in the portion of chromosome 2 containing the ACETOLACTATE SYNTHASE gene, which confers herbicide resistance to Clearfield rice. Thus, U.S. HR weedy rice is a distinct population relative to historical weedy rice and shows modifications in morphology and phenology that are relevant to weed management.Weedy rice (Oryza sativa), a conspecific weed of cultivated rice, is a global threat to rice production (Delouche et al., 2007). Classified as the same species as cultivated rice, it is highly competitive (Diarra et al., 1985; Pantone and Baker, 1991; Burgos et al., 2006), difficult to control without damaging cultivated rice, and can cause almost total crop failure (Diarra et al., 1985). The competition of cultivated rice with weedy rice can lead to yield losses from less than 5% to 100% (Kwon et al., 1991; Watanabe et al., 2000; Chen et al., 2004; Ottis et al., 2005; Shivrain et al., 2009b). Besides being difficult to control, weedy rice persists in rice fields because of key weedy traits, including variable emergence (Shivrain et al., 2009b), high degree of seed shattering (Eleftherohorinos, et al., 2002; Thurber et al., 2010), high diversity in seed dormancy (Do Lago, 1982; Noldin, 1995; Vidotto and Ferrero, 2000; Burgos et al., 2011; Tseng et al., 2013), and its seed longevity in soil (Goss and Brown, 1939). Weedy rice is a problem mainly in regions with large farm sizes where direct-seeded rice culture is practiced (Delouche et al., 2007). It is not a major problem in transplanted rice culture, where roguing weeds is possible and hand labor is available. The severity of the problem has increased in recent decades because of the significant shift to direct seeding from transplanting (Pandey and Velasco, 2002; Rao et al., 2007; Chauhan et al., 2013), which is driven by water scarcity (Kummu et al., 2010; Turral et al., 2011), increasing labor costs, and migration of labor to urban areas (Grimm et al., 2008).The herbicide-resistant (HR) Clearfield rice technology (Croughan, 2003) provides an option to control weedy rice in rice using imidazolinone herbicides, in particular, imazethapyr. Imidazolinones belong to group 2 herbicides, also known as ACETOLACTATE SYNTHASE (ALS) inhibitors. Examples of herbicides in this group are imazamox, imazapic, imazaquin, and imazethapyr. Developed through mutagenesis of the ALS locus (Croughan, 1998), Clearfield rice was first commercialized in 2002 in the southern U.S. rice belt (Tan et al., 2005). Low levels of natural hybridization are known to occur between the crop and weedy rice. Gene flow generally ranges from 0.003% to 0.25% (Noldin et al., 2002; Song et al., 2003; Messeguer et al., 2004; Gealy, 2005; Shivrain et al., 2007, 2008). After the adoption of Clearfield technology, resistant weedy outcrosses were soon detected in commercial fields (Fig. 1), generally after two cropping seasons of Clearfield rice, where escaped weedy rice was able to produce seed (Zhang et al., 2006; Burgos et al., 2007, 2008). Similar observations have been reported outside the United States, in other regions adopting the technology (Gressel and Valverde, 2009; Busconi et al., 2012).Open in a separate windowFigure 1.Suspected herbicide-resistant weedy rice in a rice field previously planted with Clearfield rice along the Mississippi River Delta in Arkansas. More than 10 morphotypes of weedy rice were observed in this field, with different maturity periods. In the foreground is a typical weedy rice with pale green leaves; the rice cultivar has dark green leaves. The inset shows a weedy morphotype that matured earlier than cultivated rice.Despite this complication, the adoption of Clearfield rice technology is increasing, albeit at a slower pace than that of glyphosate-resistant crops. After a decade of commercialization, 57% of the rice area in Arkansas was planted with Clearfield rice cultivars in 2013 (J. Hardke, personal communication). Clearfield technology has been very successful at controlling weedy rice, and polls among rice growers suggest that farmers have kept the problem of HR weeds in check by following the recommended stewardship practices (Burgos et al., 2008). The most notable of these are (1) implementation of herbicide programs that incorporate all possible modes of action available for rice production; (2) ensuring maximum efficacy of the herbicides used; (3) preventing seed production from escaped weedy rice, remnant weedy rice after crop harvest, or volunteer rice and weedy rice in the next crop cycle; (4) rotating Clearfield rice with other crops to break the weedy rice cycle; and (5) practicing zero tillage to avoid burying HR weedy rice seed (Burgos et al., 2008).Clearfield rice has gained a foothold in Asia, where rice cultivation originated (Londo and Schaal, 2007; Zong et al., 2007). Clearfield rice received government support for commercialization in Malaysia in 2010 (Azmi et al., 2012) because of the severity of the weedy rice problem there. Dramatic increases in rice yields (from 3.5 to 7 metric tons ha−1) were reported in Malaysia where Clearfield rice was planted (Sudianto et al., 2013). However, the risk of gene flow and evolution of resistant weedy rice populations is high in the tropics, where up to three rice crops are planted each year, and freezing temperatures, which would reduce the density of volunteer plants, do not occur.In the United States, where Clearfield technology originated and has been used for the longest time, the interaction between HR cultivated rice and weedy rice is not yet fully understood. Two main populations of weedy rice are known to occur in the southern United States and can be found in the same cultivated rice fields. These populations are genetically differentiated, are largely distinct at the phenotypic level, and have separate evolutionary origins (Reagon et al., 2010). One group tends to have straw-colored hulls and is referred to as the SH population; a second group tends to have black-colored hulls and awns and is referred to as the BHA population (Reagon et al., 2010). Genomic evidence suggests that both groups descended from cultivated ancestors but not from the tropical japonica subgroup varieties that are grown commercially in the United States. Instead, the SH group evolved from indica, a subgroup of rice commonly grown in the lowland tropics, and the BHA group descended from aus, a related cultivated subgroup typically grown in Bangladesh and the West Bengal region (Reagon et al., 2010). Weed-weed and weed-crop hybrids are also known to occur, but prior to Clearfield commercialization, these hybrids had occurred at low frequency (Reagon et al., 2010; Gealy et al., 2012). With the advent and increased adoption of Clearfield cultivars, the impact on U.S. weedy rice population structure and the prevalence of the SH and BHA groups are unknown.Efforts to predict the possible consequences of HR or genetically modified rice on weedy rice have been a subject of discussion for many years. Both weedy rice and cultivated rice are primarily self-fertilizing, but, as mentioned above, low levels of gene flow are known to occur. Additional environmental and intrinsic genetic factors can act as prezygotic and postzygotic mating barriers between cultivated and weedy rice and influence the possibility and levels of gene flow between these groups (Craig et al., 2014; Thurber et al., 2014). However, once gene flow occurs between cultivated and weedy rice, and if the resulting hybrids are favored by selection, the resulting morphological, genetic, and physiological changes in weedy rice populations can alter the way that weedy rice evolves and competes. For example, herbicide-resistant weed outcrosses in an experimental field have been observed to be morphologically diverse (Shivrain et al., 2006), with some individuals carrying major weedy traits and well adapted to rice agriculture. Such weedy plants could be more problematic than their normal weedy counterparts. Thus, introgression of crop genes into weedy populations has the potential to change the population dynamic, genetic structure, and morphological profile of weedy plants. This, in turn, must alter our crop management practices. To increase our understanding of the impact of HR rice on the evolution of weedy rice, in this article we aim to (1) assess the frequency of herbicide resistance in weedy rice in southern U.S. rice fields with a history of Clearfield use; (2) characterize the weedy attributes of resistant populations; and (3) determine the genetic origins of herbicide-resistant weeds in U.S. fields.  相似文献   
123.
A Bacterial Artificial Chromosome (BAC) genomic DNA library of Anopheles gambiae, the major human malaria vector in sub-Saharan Africa, was constructed and characterized. This library (ND-TAM) is composed of 30,720 BAC clones in eighty 384-well plates. The estimated average insert size of the library is 133 kb, with an overall genome coverage of approximately 14-fold. The ends of approximately two-thirds of the clones in the library were sequenced, yielding 32,340 pair-mate ends. A statistical analysis (G-test) of the results of PCR screening of the library indicated a random distribution of BACs in the genome, although one gap encompassing the white locus on the X-chromosome was identified. Furthermore, combined with another previously constructed BAC library (ND-1), ~2,000 BACs have been physically mapped by polytene chromosomal in situ hybridization. These BAC end pair mates and physically mapped BACs have been useful for both the assembly of a fully sequenced A. gambiae genome and for linking the assembled sequence to the three polytene chromosomes. This ND-TAM library is now publicly available at both http://www.malaria.mr4.org/mr4pages/index.html/ and http://hbz.tamu.edu/, providing a valuable resource to the mosquito research community.  相似文献   
124.
Calmodulin (CaM) may function as a regulatory subunit of ryanodine receptor (RYR) channels, modulating both channel activation and inhibition by Ca2+; however, mechanisms underlying differences in CaM regulation of the RYR isoforms expressed in skeletal muscle (RYR1) and cardiac muscle (RYR2) are poorly understood. Here we use a series of CaM mutants deficient in Ca2+ binding to compare determinants of CaM regulation of the RYR1 and RYR2 isoforms. In submicromolar Ca2+, activation of the RYR1 isoform by each of the single-point CaM mutants was similar to that by wild-type apoCaM, whereas in micromolar Ca2+, RYR1 inhibition by Ca2+CaM was abolished by mutations targeting CaM's C-terminal Ca2+ sites. In contrast to the RYR1, no activation of the cardiac RYR2 isoform by wild-type CaM was observed, but rather CaM inhibited the RYR2 at all Ca2+ concentrations (100 nM to 1 mM). Consequently, whereas the apparent Ca2+ sensitivity of the RYR1 isoform was enhanced in the presence of CaM, the RYR2 displayed the opposite response (RYR2 Ca2+ EC50 increased 7-10-fold in the presence of 5 microM wild-type CaM). CaM inhibition of the RYR2 was nonetheless abolished by each of four mutations targeting individual CaM Ca2+ sites. Furthermore, a mutant CaM deficient in Ca2+ binding at all four Ca2+ sites significantly activated the RYR2 and acted as a competitive inhibitor of RYR2 regulation by wild-type Ca2+CaM. We conclude that Ca2+ binding to CaM determines the effect of CaM on both RYR1 and RYR2 channels and that isoform differences in CaM regulation reflect the differential tuning of Ca2+ binding sites on CaM when bound to the different RYRs. These results thus suggest a novel mechanism by which CaM may contribute to functional diversity among the RYR isoforms.  相似文献   
125.
To better understand the role of disrupted transforming growth factor beta (TGFbeta) signaling in fibrosis, we have selectively expressed a kinase-deficient human type II TGFbeta receptor (TbetaRIIDeltak) in fibroblasts of transgenic mice, using a lineage-specific expression cassette subcloned from the pro-alpha2(I) collagen gene. Surprisingly, despite previous studies that characterized TbetaRIIDeltak as a dominant negative inhibitor of TGFbeta signaling, adult mice expressing this construct demonstrated TGFbeta overactivity and developed dermal and pulmonary fibrosis. Compared with wild type cells, transgenic fibroblasts proliferated more rapidly, produced more extracellular matrix, and showed increased expression of key markers of TGFbeta activation, including plasminogen activator inhibitor-1, connective tissue growth factor, Smad3, Smad4, and Smad7. Smad2/3 phosphorylation was increased in transgenic fibroblasts. Overall, the gene expression profile of explanted transgenic fibroblasts using cDNA microarrays was very similar to that of littermate wild type cells treated with recombinant TGFbeta1. Despite basal up-regulation of TGFbeta signaling pathways, transgenic fibroblasts were relatively refractory to further stimulation with TGFbeta1. Thus, responsiveness of endogenous genes to TGFbeta was reduced, and TGFbeta-regulated promoter-reporter constructs transiently transfected into transgenic fibroblasts showed little activation by recombinant TGFbeta1. Responsiveness was partially restored by overexpression of wild type type II TGFbeta receptors. Activation of MAPK pathways by recombinant TGFbeta1 appeared to be less perturbed than Smad-dependent signaling. Our results show that expression of TbetaRIIDeltak selectively in fibroblasts leads to paradoxical ligand-dependent activation of downstream signaling pathways and causes skin and lung fibrosis. As well as confirming the potential for nonsignaling receptors to regulate TGFbeta activity, these findings support a direct role for perturbed TGFbeta signaling in fibrosis and provide a novel genetically determined animal model of fibrotic disease.  相似文献   
126.
127.
ADAMs (A Disintegrin And Metalloprotease domain) are metalloprotease-disintegrin proteins that have been implicated in cell adhesion, protein ectodomain shedding, matrix protein degradation and cell fusion. Since such events are critical for bone resorption and osteoclast recruitment, we investigated whether they require ADAMs. We report here which ADAMs we have identified in bone cells, as well as our analysis of the generation, migration and resorptive activity of osteoclasts in developing metatarsals of mouse embryos lacking catalytically active ADAM 17 [TNFalpha converting enzyme (TACE)]. The absence of TACE activity still allowed the generation of cells showing an osteoclastic phenotype, but prevented their migration into the core of the diaphysis and the subsequent formation of marrow cavity. This suggests a role of TACE in the recruitment of osteoclasts to future resorption sites.  相似文献   
128.
Here we report that mutations within the DNA-binding domain of AR, shown previously to inhibit nuclear export to the cytoplasm, cause an androgen-dependent defect in intranuclear trafficking of AR. Mutation of two conserved phenylalanines within the DNA recognition helix (F582, 583A) results in androgen-dependent arrest of AR in multiple subnuclear foci. A point mutation in one of the conserved phenylalanines (DeltaF582, F582Y) is known to cause androgen insensitivity syndrome (AIS). Both AIS mutants (DeltaF582, F582Y) and the export mutant (F582, 583A) displayed androgen-dependent arrest in foci, and all three mutants promoted androgen-dependent accumulation of the histone acetyl transferase CREB binding protein (CBP) in the foci. The foci correspond to a subnuclear compartment that is highly enriched for the steroid receptor coactivator glucocorticoid receptor-interacting protein (GRIP)-1. Agonist-bound wild-type AR induces the redistribution of GRIP-1 from foci to the nucleoplasm. This likely reflects a direct interaction between these proteins because mutation of a conserved residue within the major coactivator binding site on AR (K720A) inhibits AR-dependent dissociation of GRIP-1 from foci. GRIP-1 also remains foci-associated in the presence of agonist-bound F582, 583A, DeltaF582, or F582Y forms of AR. Two-dimensional phospho-peptide mapping and analysis with a phospho-specific antibody revealed that mutant forms of AR that arrest in the subnuclear foci are hypophosphorylated at Ser81, a site that normally undergoes androgen-dependent phosphorylation. Our working model is that the subnuclear foci are sites where AR undergoes ligand-dependent engagement with GRIP-1 and CBP, a recruitment step that occurs before Ser81 phosphorylation and association with promoters of target genes.  相似文献   
129.
130.
In 2015, Zika virus (ZIKV; Flaviviridae; Flavivirus) emerged in the Americas, causing millions of infections in dozens of countries. The rapid spread of the virus and the association with disease outcomes such as Guillain-Barré syndrome and microcephaly make understanding transmission dynamics essential. Currently, there are no reports of vector competence (VC) of American mosquitoes for ZIKV isolates from the Americas. Further, it is not clear whether ZIKV strains from other genetic lineages can be transmitted by American Aedes aegypti populations, and whether the scope of the current epidemic is in part facilitated by viral factors such as enhanced replicative fitness or increased vector competence. Therefore, we characterized replication of three ZIKV strains, one from each of the three phylogenetic clades in several cell lines and assessed their abilities to be transmitted by Ae. aegypti mosquitoes. Additionally, laboratory colonies of different Culex spp. were infected with an American outbreak strain of ZIKV to assess VC. Replication rates were variable and depended on virus strain, cell line and MOI. African strains used in this study outcompeted the American strain in vitro in both mammalian and mosquito cell culture. West and East African strains of ZIKV tested here were more efficiently transmitted by Ae. aegypti from Mexico than was the currently circulating American strain of the Asian lineage. Long-established laboratory colonies of Culex mosquitoes were not efficient ZIKV vectors. These data demonstrate the capacity for additional ZIKV strains to infect and replicate in American Aedes mosquitoes and suggest that neither enhanced virus replicative fitness nor virus adaptation to local vector mosquitoes seems likely to explain the extent and intensity of ZIKV transmission in the Americas.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号