首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2618篇
  免费   354篇
  2972篇
  2022年   16篇
  2021年   35篇
  2020年   26篇
  2019年   28篇
  2018年   41篇
  2017年   27篇
  2016年   68篇
  2015年   108篇
  2014年   127篇
  2013年   131篇
  2012年   133篇
  2011年   132篇
  2010年   103篇
  2009年   92篇
  2008年   132篇
  2007年   132篇
  2006年   87篇
  2005年   97篇
  2004年   101篇
  2003年   108篇
  2002年   109篇
  2001年   88篇
  2000年   89篇
  1999年   69篇
  1998年   34篇
  1997年   35篇
  1996年   37篇
  1995年   37篇
  1994年   40篇
  1993年   32篇
  1992年   69篇
  1991年   60篇
  1990年   47篇
  1989年   54篇
  1988年   42篇
  1987年   26篇
  1986年   34篇
  1985年   34篇
  1984年   25篇
  1983年   20篇
  1982年   21篇
  1981年   22篇
  1980年   17篇
  1979年   16篇
  1978年   18篇
  1975年   19篇
  1974年   18篇
  1973年   15篇
  1972年   11篇
  1968年   14篇
排序方式: 共有2972条查询结果,搜索用时 15 毫秒
121.
A method to measure genomic response to natural and artificial selection by means of genetic markers in livestock is proposed. Genomic response through several levels of selection was measured using sequential testing for distorted segregation of alleles among selected and nonselected sons, single-sperm typing, and a test with records for growth performance. Statistical power at a significance level of 0.05 was >0.5 for a marker linked to a QTL with recombination fractions 0, 0.10, and 0.20 for detecting genomic responses for gene effects of 0.6, 0.7, and 1.0 phenotypic standard deviations, respectively. Genomic response to artificial selection in six commercial bull sire families comprising 285 half-sib sons selected for growth performance was measured using 282 genetic markers evenly distributed over the cattle genome. A genome-wide test using selected sons was significant (P < 0.001), indicating that selection induces changes in the genetic makeup of commercial cattle populations. Markers located in chromosomes 6, 10, and 16 identified regions in those chromosomes that are changing due to artificial selection as revealed by the association of records of performance with alleles at specific markers. Either natural selection or genetic drift may cause the observed genomic response for markers in chromosomes 1, 7, and 17.  相似文献   
122.
A breeding programme to eradicate copper toxicosis in Danish Bedlington terriers has been established based on a DNA marker test. Genotyping of both parents is compulsory and after 1 January 2000, only homozygous non-carriers are used for breeding. In this study, two groups of Bedlington terriers were genotyped at 18 microsatellite loci. One group represented the original population of Bedlington terriers before introducing the breeding programme (n = 23); the other represented a group of homozygous non-carriers (n = 24) available for breeding after year 2000. Allele numbers, allele frequencies, observed heterozygosities (Ho), expected heterozygosities (He), locus-specific coefficients of inbreeding (Fl) and Nei's genetic distance (D) was calculated. Individual coefficients of inbreeding (Fi) were calculated from the pedigrees and an assignment test was performed. Four rare alleles were lost in the group of homozygous non-carriers. No significant differences were observed between the mean values of allele numbers, Ho, He, Fl and Fi of the two populations of dogs. Nei's genetic distance between the two populations was 0.06 and 88% of the homozygous non-carriers were assigned correctly in the assignment test. The overall diversity of the breed was low (Ho = 0.41) and the breeders were advised to include the heterozygous carriers again.  相似文献   
123.
In a series of experiments, kin-biased behavior of young browntrout (Salmo trutta) was observed. The aggressiveness shownby groups of familiar siblings (siblings reared together sincefertilization) and groups of unfamiliar siblings (siblings rearedapart since fertilization) was significantly lower comparedto that of mixed groups of two unrelated sibling groups (offspringof two different pairs of parents). The evolution of kin-biasedbehavior, as shown by a reduction in aggressiveness, is assumedto have evolved through a kin-selective mechanism.[Behav Ecol7: 445-450 (1996)]  相似文献   
124.
The feasibility to sequence entire genomes of virtually any organism provides unprecedented insights into the evolutionary history of populations and species. Nevertheless, many population genomic inferences – including the quantification and dating of admixture, introgression and demographic events, and inference of selective sweeps – are still limited by the lack of high‐quality haplotype information. The newest generation of sequencing technology now promises significant progress. To establish the feasibility of haplotype‐resolved genome resequencing at population scale, we investigated properties of linked‐read sequencing data of songbirds of the genus Oenanthe across a range of sequencing depths. Our results based on the comparison of downsampled (25×, 20×, 15×, 10×, 7×, and 5×) with high‐coverage data (46–68×) of seven bird genomes mapped to a reference suggest that phasing contiguities and accuracies adequate for most population genomic analyses can be reached already with moderate sequencing effort. At 15× coverage, phased haplotypes span about 90% of the genome assembly, with 50% and 90% of phased sequences located in phase blocks longer than 1.25–4.6 Mb (N50) and 0.27–0.72 Mb (N90). Phasing accuracy reaches beyond 99% starting from 15× coverage. Higher coverages yielded higher contiguities (up to about 7 Mb/1 Mb [N50/N90] at 25× coverage), but only marginally improved phasing accuracy. Phase block contiguity improved with input DNA molecule length; thus, higher‐quality DNA may help keeping sequencing costs at bay. In conclusion, even for organisms with gigabase‐sized genomes like birds, linked‐read sequencing at moderate depth opens an affordable avenue towards haplotype‐resolved genome resequencing at population scale.  相似文献   
125.
126.
Plasmid pRO1957 contains a 26.5-kb BamHI restriction endonuclease-cleaved DNA fragment cloned from the chromosome of Pseudomonas pickettii PKO1 that allows P. aeruginosa PAO1c to grow on toluene, benzene, phenol, or m-cresol as the sole carbon source. The genes encoding enzymes for meta cleavage of catechol or 3-methylcatechol, derived from catabolism of these substrates, were subcloned from pRO1957 and were shown to be organized into a single operon with the promoter proximal to tbuE. Deletion and analysis of subclones demonstrated that the order of genes in the meta cleavage operon was tbuEFGKIHJ, which encoded catechol 2,3-dioxygenase, 2-hydroxymuconate semialdehyde hydrolase, 2-hydroxymuconate semialdehyde dehydrogenase, 4-hydroxy-2-oxovalerate aldolase, 4-oxalocrotonate decarboxylase, 4-oxalocrotonate isomerase, and 2-hydroxypent-2,4-dienoate hydratase, respectively. The regulatory gene for the tbuEFGKIHJ operon, designated tbuS, was subcloned into vector plasmid pRO2317 from pRO1957 as a 1.3-kb PstI fragment, designated pRO2345. When tbuS was not present, meta pathway enzyme expression was partially derepressed, but these activity levels could not be fully induced. However, when tbuS was present in trans with tbuEFGKIHJ, meta pathway enzymes were repressed in the absence of an effector and were fully induced when an effector was present. This behavior suggests that the gene product of tbuS acts as both a repressor and an activator. Phenol and m-cresol were inducers of meta pathway enzymatic activity. Catechol, 3-methylcatechol, 4-methylcatechol, o-cresol, and p-cresol were not inducers but could be metabolized by cells previously induced by phenol or m-cresol.  相似文献   
127.
Capabilities of lipases from Candida antarctica, Candida rugosa and porcine pancreas have been evaluated for regioselective acetylation of 2-phenyl-4-(D-arabino-tetrahydroxybutyl)-2H-1,2,3-triazole, 2-phenyl-4-(D-arabino-O-1',2'-isopropylidene-3',4'-dihydroxybutyl)-2H-1,2,3-triazole and 2-phenyl-4-(D-threo-trihydroxypropyl)-2H-1,2,3-triazole, precursors for the synthesis of triazolylacyclonucleosides. C. antarctica lipase and porcine pancreatic lipase exhibited exclusive selectivity for the acetylation of primary hydroxyl group over secondary hydroxyl group(s) in all the three cases.  相似文献   
128.
DsbA from Escherichia coli is the most oxidizing member of the thiol-disulfide oxidoreductase family (E(o)' = -122 mV) and is required for efficient disulfide bond formation in the periplasm. The reactivity of the catalytic disulfide bond (Cys(30)-Pro(31)-His(32)-Cys(33)) is primarily due to an extremely low pK(a) value (3.4) of Cys(30), which is stabilized by the partial positive dipole charge of the active-site helix alpha1 (residues 30-37). We have randomized all non-cysteine residues of helix alpha1 (residues 31, 32, and 34-37) and found that two-thirds of the resulting variants complement DsbA deficiency in a dsbA deletion strain. Sequencing of 98 variants revealed a large number of non-conservative replacements in active variants, even at well conserved positions. This indicates that tertiary structure context strongly determines alpha-helical secondary structure formation of the randomized sequence. A subset of active and inactive variants was further characterized. All these variants were more reducing than wild type DsbA, but the redox potentials of active variants did not drop below -210 mV. All inactive variants had redox potentials lower than -210 mV, although some of the inactive proteins were still re-oxidized by DsbB. This demonstrates that efficient oxidation of substrate polypeptides is the crucial property of DsbA in vivo.  相似文献   
129.
Three overlapping cDNAs encoding alpha 1 (XII) collagen have been isolated and sequenced. The DNAs define five sequence domains within the chain. Three domains are nontriple-helical; two are relatively short triple-helical regions. The amino acid sequences of tryptic peptides derived from 16- and 10-kDa pepsin-resistant fragments isolated from tendon extracts are in full agreement with the deduced sequences of the triple-helical regions. Two of the five sequence domains in alpha 1 (XII), one triple-helical and one nontriple-helical, show a high degree of similarity to regions in type IX collagen chains. In addition, examination of seven exons in the alpha 1 (XII) gene shows that the gene is, in part, similar to the structure of type IX collagen genes. Therefore, collagen types IX and XII are partially homologous. The alpha 1 (XII) sequence data predict an asymmetric structure for type XII collagen molecules, fully consistent with the rotary shadowing images. These images show a triple-helical 75-nm tail attached through a central globule to three finger-like structures, each 60 nm long (Dublet, B., Oh, S., Sugrue, S. P., Gordon, M. K., Gerecke, D. R., Olsen, B. R., and van der Rest, M. (1989) J. Biol. Chem. 264, 13150-13156).  相似文献   
130.
Type XII collagen is a member of the FACIT (fibril-associated collagens with interrupted triple helices) group of extracellular matrix proteins. Like the other members of this group, collagen types IX and XIV, type XII has alternating triple-helical and non-triple-helical domains. Because of its structure, its association with collagen fibrils, and its distribution in dense connective tissues, type XII is thought possibly to act as a cross-bridge between fibrils and resist shear forces caused by tension. A portion of the ffuse gene was isolated by screening a genomic library with a chicken alpha 1 (XII) cDNA probe, followed by subcloning and sequence analysis. Comparison of exon sequences with the sequence of a mouse cDNA clone allowed the mouse gene to be identified as the alpha 1 (XII) collagen gene. In the mouse, Col12a1 is located on chromosome 9, as determined by linkage analysis using DNA from interspecific backcrosses with Mus spretus. Screening of a human genomic library also allowed the isolation of a human alpha 1(XII)-like gene (CoL12A1). This gene was mapped to chromosome 6 by blot hybridization to DNA from human/hamster hybrid cell lines. This information should prove useful in determining the role of type XII collagen genes as candidate genes in inheritable connective tissue diseases.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号