首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   266篇
  免费   9篇
  2023年   1篇
  2022年   4篇
  2021年   8篇
  2020年   1篇
  2019年   2篇
  2018年   9篇
  2017年   4篇
  2016年   9篇
  2015年   21篇
  2014年   19篇
  2013年   23篇
  2012年   22篇
  2011年   32篇
  2010年   26篇
  2009年   14篇
  2008年   22篇
  2007年   21篇
  2006年   15篇
  2005年   12篇
  2004年   6篇
  2003年   1篇
  1999年   1篇
  1991年   1篇
  1988年   1篇
排序方式: 共有275条查询结果,搜索用时 15 毫秒
261.
262.
The methylesterification status of cell wall pectins, mediated through the interplay of pectin methylesterases (PMEs) and pectin methylesterase inhibitors (PMEIs), influences the biophysical properties of plant cell walls. We found that the overexpression of a PMEI gene in Arabidopsis thaliana plants caused the stems to develop twists and loops, most strongly around points on the stem where leaves or inflorescences failed to separate from the main stem. Altered elasticity of the stem, underdevelopment of the leaf cuticle, and changes in the sugar composition of the cell walls of stems were evident in the PMEI overexpression lines. We discuss the mechanisms that potentially underlie the aberrant growth phenotypes.  相似文献   
263.
Mammalian arenaviruses are zoonotic viruses that cause asymptomatic, persistent infections in their rodent hosts but can lead to severe and lethal hemorrhagic fever with bleeding and multiorgan failure in human patients. Lassa virus (LASV), for example, is endemic in several West African countries, where it is responsible for an estimated 500,000 infections and 5,000 deaths annually. There are currently no FDA-licensed therapeutics or vaccines available to combat arenavirus infection. A hallmark of arenavirus infection (e.g., LASV) is general immunosuppression that contributes to high viremia. Here, we discuss the early host immune responses to arenavirus infection and the recently discovered molecular mechanisms that enable pathogenic viruses to suppress host immune recognition and to contribute to the high degree of virulence. We also directly compare the innate immune evasion mechanisms between arenaviruses and other hemorrhagic fever-causing viruses, such as Ebola, Marburg, Dengue, and hantaviruses. A better understanding of the immunosuppression and immune evasion strategies of these deadly viruses may guide the development of novel preventative and therapeutic options.  相似文献   
264.
265.
Summary: The arenaviruses are a family of negative-sense RNA viruses that cause severe human disease ranging from aseptic meningitis to hemorrhagic fever syndromes. There are currently no FDA-approved vaccines for the prevention of arenavirus disease, and therapeutic treatment is limited to the use of ribavirin and/or immune plasma for a subset of the pathogenic arenaviruses. The considerable genetic variability observed among the seven arenaviruses that are pathogenic for humans illustrates one of the major challenges for vaccine development today, namely, to overcome pathogen heterogeneity. Over the past 5 years, our group has tested several strategies to overcome pathogen heterogeneity, utilizing the pathogenic arenaviruses as a model system. Because T cells play a prominent role in protective immunity following arenavirus infection, we specifically focused on the development of human vaccines that would induce multivalent and cross-protective cell-mediated immune responses. To facilitate our vaccine development and testing, we conducted large-scale major histocompatibility complex (MHC) class I and class II epitope discovery on murine, nonhuman primate, and human backgrounds for each of the pathogenic arenaviruses, including the identification of protective HLA-restricted epitopes. Finally, using the murine model of lymphocytic choriomeningitis virus infection, we studied the phenotypic characteristics associated with immunodominant and protective T cell epitopes. This review summarizes the findings from our studies and discusses their application to future vaccine design.  相似文献   
266.
267.
To make good decisions, we evaluate past choices to guide later decisions. In most situations, we have the opportunity to simultaneously learn about both the consequences of our choice (i.e., operantly) and the stimuli associated with correct or incorrect choices (i.e., classically) [1]. Interestingly, in many species, including humans, these learning processes occasionally lead to irrational decisions [2]. An extreme case is the habitual drug user consistently administering the drug despite the negative consequences, but we all have experience with our own, less severe habits. The standard animal model employs a combination of operant and classical learning components to bring about habit formation in rodents [3] and [4]. After extended training, these animals will press a lever even if the outcome associated with lever-pressing is no longer desired [5]. In this study, experiments with wild-type and transgenic flies revealed that a prominent insect neuropil, the mushroom bodies (MBs), regulates habit formation in flies by inhibiting the operant learning system when a predictive stimulus is present. This inhibition enables generalization of the classical memory and prevents premature habit formation. Extended training in wild-type flies produced a phenocopy of MB-impaired flies, such that generalization was abolished and goal-directed actions were transformed into habitual responses.  相似文献   
268.
269.
One of the main goals of modern drug development is customized care, where doctors match the right patient to the right treatment at the right dose, based on quantitative evidence. In this paper we review three key aspects of drug development that are critical towards achieving this goal. More specifically, we discuss (i) the advantages of modern model-based dose-finding as opposed to traditional pairwise comparisons, (ii) the value of pharmacometrical modeling, understanding the variability in how patients metabolize, tolerate, and respond to drugs, and (iii) the potential impact of enrichment strategies to identify study populations that are most likely to benefit from the investigational drug under development.  相似文献   
270.
The biogenic amine octopamine (OA) and its precursor tyramine (TA) are involved in controlling a plethora of different physiological and behavioral processes. The tyramine-β-hydroxylase (tβh) gene encodes the enzyme catalyzing the last synthesis step from TA to OA. Here, we report differential dominance (from recessive to overdominant) of the putative null tβhnM18 allele in 2 behavioral measures in Buridan’s paradigm (walking speed and stripe deviation) and in proboscis extension (sugar sensitivity) in the fruit fly Drosophila melanogaster. The behavioral analysis of transgenic tβh expression experiments in mutant and wild-type flies as well as of OA and TA receptor mutants revealed a complex interaction of both aminergic systems. Our analysis suggests that the different neuronal networks responsible for the 3 phenotypes show differential sensitivity to tβh gene expression levels. The evidence suggests that this sensitivity is brought about by a TA/OA opponent system modulating the involved neuronal circuits. This conclusion has important implications for standard transgenic techniques commonly used in functional genetics.

Differential dominance occurs when genes associated with several phenotypes (pleiotropic genes) show different modes of inheritance (e.g., recessive, dominant or overdominant) depending on the phenotype. This study reveals that differential sensitivity to gene expression levels can mediate differential dominance, which can be a significant challenge for standard transgenic techniques commonly used to elucidate gene function.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号