首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   84篇
  免费   6篇
  2023年   2篇
  2022年   3篇
  2021年   4篇
  2020年   6篇
  2019年   5篇
  2018年   4篇
  2017年   4篇
  2016年   2篇
  2015年   1篇
  2014年   7篇
  2013年   11篇
  2012年   8篇
  2011年   4篇
  2010年   2篇
  2009年   2篇
  2008年   2篇
  2007年   4篇
  2006年   6篇
  2005年   3篇
  2004年   3篇
  2003年   2篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1991年   1篇
  1965年   1篇
排序方式: 共有90条查询结果,搜索用时 703 毫秒
61.
The costs and benefits of being social vary with environmental conditions, so individuals must weigh the balance between these trade-offs in response to changes in the environment. Temperature is a salient environmental factor that may play a key role in altering the costs and benefits of sociality through its effects on food availability, predator abundance, and other ecological parameters. In ectotherms, changes in temperature also have direct effects on physiological traits linked to social behaviour, such as metabolic rate and locomotor performance. In light of climate change, it is therefore important to understand the potential effects of temperature on sociality. Here, we took the advantage of a ‘natural experiment’ of threespine sticklebacks from contrasting thermal environments in Iceland: geothermally warmed water bodies (warm habitats) and adjacent ambient-temperature water bodies (cold habitats) that were either linked (sympatric) or physically distinct (allopatric). We first measured the sociability of wild-caught adult fish from warm and cold habitats after acclimation to a low and a high temperature. At both acclimation temperatures, fish from the allopatric warm habitat were less social than those from the allopatric cold habitat, whereas fish from sympatric warm and cold habitats showed no differences in sociability. To determine whether differences in sociability between thermal habitats in the allopatric population were heritable, we used a common garden breeding design where individuals from the warm and the cold habitat were reared at a low or high temperature for two generations. We found that sociability was indeed heritable but also influenced by rearing temperature, suggesting that thermal conditions during early life can play an important role in influencing social behaviour in adulthood. By providing the first evidence for a causal effect of rearing temperature on social behaviour, our study provides novel insights into how a warming world may influence sociality in animal populations.  相似文献   
62.
1. A lactate dehydrogenase isoenzyme present in human spermatozoa and semen was isolated and characterized biochemically in term of its pH for optimum activity and by means of K(m) values for lactate, NAD(+) and NAD analogues. The results were compared with those obtained with the human heart-type and the liver-type lactate dehydrogenase isoenzymes. 2. The enzyme was characterized by its resistance to digestion with different proteolytic enzymes. The time for 50% digestion in terms of residual dehydrogenase activity was compared with times obtained for the H(4)- and M(4)-types.  相似文献   
63.
64.
Gene family evolution is determined by microevolutionary processes (e.g., point mutations) and macroevolutionary processes (e.g., gene duplication and loss), yet macroevolutionary considerations are rarely incorporated into gene phylogeny reconstruction methods. We present a dynamic program to find the most parsimonious gene family tree with respect to a macroevolutionary optimization criterion, the weighted sum of the number of gene duplications and losses. The existence of a polynomial delay algorithm for duplication/loss phylogeny reconstruction stands in contrast to most formulations of phylogeny reconstruction, which are NP-complete. We next extend this result to obtain a two-phase method for gene tree reconstruction that takes both micro- and macroevolution into account. In the first phase, a gene tree is constructed from sequence data, using any of the previously known algorithms for gene phylogeny construction. In the second phase, the tree is refined by rearranging regions of the tree that do not have strong support in the sequence data to minimize the duplication/lost cost. Components of the tree with strong support are left intact. This hybrid approach incorporates both micro- and macroevolutionary considerations, yet its computational requirements are modest in practice because the two-phase approach constrains the search space. Our hybrid algorithm can also be used to resolve nonbinary nodes in a multifurcating gene tree. We have implemented these algorithms in a software tool, NOTUNG 2.0, that can be used as a unified framework for gene tree reconstruction or as an exploratory analysis tool that can be applied post hoc to any rooted tree with bootstrap values. The NOTUNG 2.0 graphical user interface can be used to visualize alternate duplication/loss histories, root trees according to duplication and loss parsimony, manipulate and annotate gene trees, and estimate gene duplication times. It also offers a command line option that enables high-throughput analysis of a large number of trees.  相似文献   
65.
Terrestrial carbon cycle feedbacks to global warming are major uncertainties in climate models. For in‐depth understanding of changes in soil organic carbon (SOC) after soil warming, long‐term responses of SOC stabilization mechanisms such as aggregation, organo‐mineral interactions and chemical recalcitrance need to be addressed. This study investigated the effect of 6 years of geothermal soil warming on different SOC fractions in an unmanaged grassland in Iceland. Along an extreme warming gradient of +0 to ~+40 °C, we isolated five fractions of SOC that varied conceptually in turnover rate from active to passive in the following order: particulate organic matter (POM), dissolved organic carbon (DOC), SOC in sand and stable aggregates (SA), SOC in silt and clay (SC‐rSOC) and resistant SOC (rSOC). Soil warming of 0.6 °C increased bulk SOC by 22 ± 43% (0–10 cm soil layer) and 27 ± 54% (20–30 cm), while further warming led to exponential SOC depletion of up to 79 ± 14% (0–10 cm) and 74 ± 8% (20–30) in the most warmed plots (~+40 °C). Only the SA fraction was more sensitive than the bulk soil, with 93 ± 6% (0–10 cm) and 86 ± 13% (20–30 cm) SOC losses and the highest relative enrichment in 13C as an indicator for the degree of decomposition (+1.6 ± 1.5‰ in 0–10 cm and +1.3 ± 0.8‰ in 20–30 cm). The SA fraction mass also declined along the warming gradient, while the SC fraction mass increased. This was explained by deactivation of aggregate‐binding mechanisms. There was no difference between the responses of SC‐rSOC (slow‐cycling) and rSOC (passive) to warming, and 13C enrichment in rSOC was equal to that in bulk soil. We concluded that the sensitivity of SOC to warming was not a function of age or chemical recalcitrance, but triggered by changes in biophysical stabilization mechanisms, such as aggregation.  相似文献   
66.
The phenology of vegetation, particularly the length of the growing season (LOS; i.e., the period from greenup to senescence), is highly sensitive to climate change, which could imply potent feedbacks to the climate system, for example, by altering the ecosystem carbon (C) balance. In recent decades, the largest extensions of LOS have been reported at high northern latitudes, but further warming‐induced LOS extensions may be constrained by too short photoperiod or unfulfilled chilling requirements. Here, we studied subarctic grasslands, which cover a vast area and contain large C stocks, but for which LOS changes under further warming are highly uncertain. We measured LOS extensions of Icelandic subarctic grasslands along natural geothermal soil warming gradients of different age (short term, where the measurements started after 5 years of warming and long term, i.e., warmed since ≥50 years) using ground‐level measurements of normalized difference vegetation index. We found that LOS linearly extended with on average 2.1 days per °C soil warming up to the highest soil warming levels (ca. +10°C) and that LOS had the potential to extend at least 1 month. This indicates that the warming impact on LOS in these subarctic grasslands will likely not saturate in the near future. A similar response to short‐ and long‐term warming indicated a strong physiological control of the phenological response of the subarctic grasslands to warming and suggested that genetic adaptations and community changes were likely of minor importance. We conclude that the warming‐driven extension of the LOSs of these subarctic grasslands did not saturate up to +10°C warming, and hence that growing seasons of high‐latitude grasslands are likely to continue lengthening with future warming (unless genetic adaptations or species shifts do occur). This persistence of the warming‐induced extension of LOS has important implications for the C‐sink potential of subarctic grasslands under climate change.  相似文献   
67.
In this report, we examine the validity of the haplotype block concept by comparing block decompositions derived from public data sets by variants of several leading methods of block detection. We first develop a statistical method for assessing the concordance of two block decompositions. We then assess the robustness of inferred haplotype blocks to the specific detection method chosen, to arbitrary choices made in the block-detection algorithms, and to the sample analyzed. Although the block decompositions show levels of concordance that are very unlikely by chance, the absolute magnitude of the concordance may be low enough to limit the utility of the inference. For purposes of SNP selection, it seems likely that methods that do not arbitrarily impose block boundaries among correlated SNPs might perform better than block-based methods.  相似文献   
68.
Research in warm-climate biomes has shown that invasion by symbiotic dinitrogen (N2)-fixing plants can transform ecosystems in ways analogous to the transformations observed as a consequence of anthropogenic, atmospheric nitrogen (N) deposition: declines in biodiversity, soil acidification, and alterations to carbon and nutrient cycling, including increased N losses through nitrate leaching and emissions of the powerful greenhouse gas nitrous oxide (N2O). Here, we used literature review and case study approaches to assess the evidence for similar transformations in cold-climate ecosystems of the boreal, subarctic and upper montane-temperate life zones. Our assessment focuses on the plant genera Lupinus and Alnus, which have become invasive largely as a consequence of deliberate introductions and/or reduced land management. These cold biomes are commonly located in remote areas with low anthropogenic N inputs, and the environmental impacts of N2-fixer invasion appear to be as severe as those from anthropogenic N deposition in highly N polluted areas. Hence, inputs of N from N2 fixation can affect ecosystems as dramatically or even more strongly than N inputs from atmospheric deposition, and biomes in cold climates represent no exception with regard to the risk of being invaded by N2-fixing species. In particular, the cold biomes studied here show both a strong potential to be transformed by N2-fixing plants and a rapid subsequent saturation in the ecosystem’s capacity to retain N. Therefore, analogous to increases in N deposition, N2-fixing plant invasions must be deemed significant threats to biodiversity and to environmental quality.  相似文献   
69.
This study investigated how dietary habits vary with lake characteristics in a fish species that exhibits extensive morphological and ecological variability, the Arctic charr Salvelinus alpinus. Iceland is a hotspot of geological activity, so its freshwater ecosystems vary greatly in physical and chemical attributes. Associations of dietary items within guts of charr were used to form prey categories that reflect habitat-specific feeding behavior. Six prey categories were defined and dominated by snails (Radix peregra), fish (Gasterosteus aculeatus), tadpole shrimp (Lepidurus arcticus), chironomid pupae, pea clam (Pisidium spp.), and the cladoceran Bosmina sp.. These reflected different combinations of feeding in littoral stone, offshore benthic, and limnetic habitats. Certain habitat-specific feeding strategies consistently occurred alongside each other within lakes. For example, zooplanktivory occurred in the same lakes as consumption from offshore habitats; piscivory occurred in the same lakes as consumption from littoral benthic habitats. Redundancy analyses (RDA) were used to investigate how lake environment was related to consumption of different prey categories. The RDA indicated that piscivory exhibited by Arctic charr was reduced where brown trout were abundant and lakes were shallow, greater zooplanktivory occurred at lower latitudes and under decreased nutrient but higher silicon dioxide concentrations, and benthic resource consumption was associated with shallower lakes and higher altitudes. This study showed that trends previously observed across fish species were supported at the intraspecific level, indicating that a single species with flexible dietary habits can fill functional roles expected of multiple species in more diverse food webs.  相似文献   
70.
Genetic variation in resistance against parasite infections is a predominant feature in host–parasite systems. However, mechanisms maintaining genetic polymorphism in resistance in natural host populations are generally poorly known. We explored whether differences in natural infection pressure between resource‐based morphs of Arctic charr (Salvelinus alpinus) have resulted in differentiation in resistance profiles. We experimentally exposed offspring of two morphs from Lake Þingvallavatn (Iceland), the pelagic planktivorous charr (“murta”) and the large benthivorous charr (“kuðungableikja”), to their common parasite, eye fluke Diplostomum baeri, infecting the eye humor. We found that there were no differences in resistance between the morphs, but clear differences among families within each morph. Moreover, we found suggestive evidence of resistance of offspring within families being positively correlated with the parasite load of the father, but not with that of the mother. Our results suggest that the inherited basis of parasite resistance in this system is likely to be related to variation among host individuals within each morph rather than ecological factors driving divergent resistance profiles at morph level. Overall, this may have implications for evolution of resistance through processes such as sexual selection.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号