全文获取类型
收费全文 | 104篇 |
免费 | 4篇 |
专业分类
108篇 |
出版年
2017年 | 3篇 |
2016年 | 1篇 |
2015年 | 3篇 |
2014年 | 5篇 |
2013年 | 9篇 |
2012年 | 1篇 |
2011年 | 8篇 |
2010年 | 7篇 |
2009年 | 9篇 |
2008年 | 4篇 |
2007年 | 9篇 |
2006年 | 8篇 |
2005年 | 7篇 |
2003年 | 1篇 |
2002年 | 1篇 |
1999年 | 1篇 |
1998年 | 8篇 |
1995年 | 2篇 |
1994年 | 1篇 |
1993年 | 1篇 |
1992年 | 1篇 |
1990年 | 1篇 |
1989年 | 2篇 |
1987年 | 1篇 |
1984年 | 1篇 |
1982年 | 1篇 |
1981年 | 5篇 |
1980年 | 2篇 |
1979年 | 1篇 |
1977年 | 1篇 |
1976年 | 1篇 |
1975年 | 1篇 |
1968年 | 1篇 |
排序方式: 共有108条查询结果,搜索用时 15 毫秒
51.
The pleiotropic mutant lethal(3)giant larvae [l(3)gl] of Drosophila hydei exhibits among other anatomical defects, hypertrophy of the larval brain and imaginal discs. Both hypertrophic tissues when transplanted into wild-type female flies behave as fast growing and lethal neoplasms. Implanted into mature wild-type larvae they fail to metamorphose. When l(3)gl neoplastic brain tissue or imaginal discs were mixed with normal imaginal discs, cultured in vivo in the abdomen of adult females and transplanted into mature wild-type larvae, the following results were obtained. The invasive l(3)gl brain neoplasm, while fatal for adult hosts, had no effect on the metamorphosis of normal imaginal disc tissue. On the other hand, the noninvasive l(3)gl imaginal disc neoplasms when mixed with normal imaginal disc tissue inhibited its development and metamorphosis in the wild-type host. This inhibitory effect was not observed when the tissues were injected as separate implants into the same host. 相似文献
52.
53.
Ozone (O3) and nitrogen (N) deposition affect plant carbon (C) dynamics and may change ecosystem C‐sink/‐source properties. We studied effects of increased background [O3] (up to [ambient] × 2) and increased N deposition (up to +50 kg ha?1 a?1) on mature, subalpine grassland during the third treatment year. During 10 days and 13 nights, distributed evenly over the growth period of 2006, we measured ecosystem‐level CO2 exchange using a static cuvette. Light dependency of gross primary production (GPP) and temperature dependency of ecosystem respiration rates (Reco) were established. Soil temperature, soil water content, and solar radiation were monitored. Using Reco and GPP values, we calculated seasonal net ecosystem production (NEP), based on hourly averages of global radiation and soil temperature. Differences in NEP were compared with differences in soil organic C after 5 years of treatment. The high [O3] had no effect on aboveground dry matter productivity (DM), but seasonal mean rates of both Reco and GPP decreased ca. 8%. NEP indicated an unaltered growing season CO2–C balance. High N treatment, with a +31% increase in DM, mean Reco increased ca. 3%, but GPP decreased ca. 4%. Consequently, seasonal NEP yielded a 53.9 g C m?2 (±22.05) C loss compared with control. Independent of treatment, we observed a negative NEP of 146.4 g C m?2 (±15.3). Carbon loss was likely due to a transient management effect, equivalent to a shift from pasture to hay meadow and a drought effect, specific to the 2006 summer climate. We argue that this resulted from strongly intensified soil microbial respiration, following mitigation of nutrient limitation. There was no interaction between O3 and N treatments. Thus, during the 2006 growing season, the subalpine grassland lost >2% of total topsoil organic C as respired CO2, with increased N deposition responsible for one‐third of that loss. 相似文献
54.
Abstract: The objective of this study was to analyse how stand age and precipitation influence abundance and diversity of epiphytic macrolichens in southern beech Nothofagus forests, estimated by lichen litter sampling. Five sites of Nothofagus dombeyi (Mirbel) Oersted were selected in Nahuel Huapi National Park, Argentina. At each site, lichen fragments from the forest floor were collected at 12.5 m2 plots in pairs of young and mature N. dombeyi forest. Additionally, two sites with multi‐aged subalpine Nothofagus pumilio (Poepp. et Endl.) Krasser forest were investigated in a similar manner. Average litterfall biomass per stand varied from less than 1 kg ha?1 in a young low‐precipitation stand to a maximum of 20 kg ha?1 in a mature high‐precipitation stand. In places with higher precipitation, litterfall biomass in N. dombeyi forest was considerably higher in old stands as compared with young ones. In places with less than 2000 mm of precipitation, differences in biomass were less pronounced. Old humid stands contained about twice as many taxa in the litter as old low‐precipitation stands and young stands in general. Mature stands in low‐precipitation sites only contained 17% of the litter biomass as compared with mature stands in high‐precipitation sites. Epiphytic lichen composition changed from predominating fruticose lichens (Usnea spp. and Protousnea spp.) in low‐precipitation stands to Pseudocyphellaria spp., Nephroma spp. and other foliose lichens, in the high‐precipitation stands. There were no clear differences in the proportion of fruticose and foliose lichens between young and old stands. Fruticose lichens dominated litter biomass in both N. pumilio sites. 相似文献
55.
Amount, composition, and rate of turnover of soil organic carbon (SOC) in mountainous cold regions is largely unknown, making predictions of future responses of this carbon (C) to changing environmental conditions uncertain. We hypothesized increasing amounts and declining turnover times of soil organic matter (SOM) under permanent grassland with increasing elevation and decreasing temperature. Samples from an irrigated transect in the Swiss Alps (880 to 2200 m elevation, mean annual temperatures +8.9 to +0.9 °C) were analyzed. Soil C stocks ranged from 49 to 96 t C ha−1 (0–20 cm) and were not related to elevation, though the highest site stored least C. Particulate organic carbon (POC) increased significantly with elevation and accounted for > 80% of the total soil C at 2200 m (0–5 cm). Mean residence times (MRTs) of POC computed by means of radiocarbon dating were in the order of years to decades and were positively related to elevation in the topsoil. At higher elevations, the estimated total C flux through the soil profile mainly depended on this fraction. MRT of mineral-associated matter ranged from decades to centuries and was not systematically related to elevation, but positively related to the soil mineral surface area and it increased with soil depth. Turnover rates from simulations with the soil C model RothC exceeded those from 14 C measurements by a factor of 1.7–3.3 which suggests that C dynamics at these sites is overestimated by the model. Size of model pools and amount of C in soil fractions were only weakly correlated, thereby challenging previously postulated hypotheses concerning the correspondence of pools and fractions for grasslands at higher elevations. 相似文献
56.
SILKE LAUTNER MICHAELA STUMMER RAINER MATYSSEK JÖRG FROMM THORSTEN E. E. GRAMS 《Plant, cell & environment》2014,37(1):254-260
Leaf photosynthesis of the sensitive plant Mimosa pudica displays a transient knockout in response to electrical signals induced by heat stimulation. This study aims at clarifying the underlying mechanisms, in particular, the involvement of respiration. To this end, leaf gas exchange and light reactions of photosynthesis were assessed under atmospheric conditions largely eliminating photorespiration by either elevated atmospheric CO2 or lowered O2 concentration (i.e. 2000 μmol mol?1 or 1%, respectively). In addition, leaf gas exchange was studied in the absence of light. Under darkness, heat stimulation caused a transient increase of respiratory CO2 release simultaneously with stomatal opening, hence reflecting direct involvement of respiratory stimulation in the drop of the net CO2 uptake rate. However, persistence of the transient decline in net CO2 uptake rate under illumination and elevated CO2 or 1% O2 makes it unlikely that photorespiration is the metabolic origin of the respiratory CO2 release. In conclusion, the transient knockout of net CO2 uptake is at least partially attributed to an increased CO2 release through mitochondrial respiration as stimulated by electrical signals. Putative CO2 limitation of Rubisco due to decreased activity of carbonic anhydrase was ruled out as the photosynthesis effect was not prevented by elevated CO2. 相似文献
57.
Background
Phloem feeding insects, such as aphids, feed almost continuously on plant phloem sap, a liquid diet that contains high concentrations of sucrose (a disaccharide comprising of glucose and fructose). To access the available carbon, aphids hydrolyze sucrose in the gut lumen and transport its constituent monosaccharides, glucose and fructose. Although sugar transport plays a critical role in aphid nutrition, the molecular basis of sugar transport in aphids, and more generally across all insects, remains poorly characterized. Here, using the latest release of the pea aphid, Acyrthosiphon pisum, genome we provide an updated gene annotation and expression profile of putative sugar transporters. Finally, gut expressed sugar transporters are functionally expressed in yeast and screened for glucose and fructose transport activity.Results
In this study, using a de novo approach, we identified 19 sugar porter (SP) family transporters in the A. pisum genome. Gene expression analysis, based on 214, 834 A. pisum expressed sequence tags, supports 17 sugar porter family transporters being actively expressed in adult female aphids. Further analysis, using quantitative PCR identifies 4 transporters, A. pisum sugar transporter 1, 3, 4 and 9 (ApST1, ApST3, ApST4 and ApST9) as highly expressed and/or enriched in gut tissue. When expressed in a Saccharomyces cerevisiae hexose transporter deletion mutant (strain EBY.VW4000), only ApST3 (previously characterized) and ApST4 (reported here) transport glucose and fructose resulting in functional rescue of the yeast mutant. Here we characterize ApST4, a 491 amino acid protein, with 12 predicted transmembrane regions, as a facilitative glucose/fructose transporter. Finally, phylogenetic reconstruction reveals that ApST4, and related, as yet uncharacterized insect transporters are phylogenetically closely related to human GLUT (SLC2A) class I facilitative glucose/fructose transporters.Conclusions
The gut enhanced expression of ApST4, and the transport specificity of its product is consistent with ApST4 functioning as a gut glucose/fructose transporter. Here, we hypothesize that both ApST3 (reported previously) and ApST4 (reported here) function at the gut interface to import glucose and fructose from the gut lumen.Electronic supplementary material
The online version of this article (doi:10.1186/1471-2164-15-647) contains supplementary material, which is available to authorized users. 相似文献58.
RG Lockie AB Schultz SJ Callaghan CA Jordan TM Luczo MD Jeffriess 《Biology of sport / Institute of Sport》2015,32(1):41-51
There is little research investigating relationships between the Functional Movement Screen (FMS) and athletic performance in female athletes. This study analyzed the relationships between FMS (deep squat; hurdle step [HS]; in-line lunge [ILL]; shoulder mobility; active straight-leg raise [ASLR]; trunk stability push-up; rotary stability) scores, and performance tests (bilateral and unilateral sit-and-reach [flexibility]; 20-m sprint [linear speed]; 505 with turns from each leg; modified T-test with movement to left and right [change-of-direction speed]; bilateral and unilateral vertical and standing broad jumps; lateral jumps [leg power]). Nine healthy female recreational team sport athletes (age = 22.67 ± 5.12 years; height = 1.66 ± 0.05 m; body mass = 64.22 ± 4.44 kilograms) were screened in the FMS and completed the afore-mentioned tests. Percentage between-leg differences in unilateral sit-and-reach, 505 turns and the jumps, and difference between the T-test conditions, were also calculated. Spearman''s correlations (p ≤ 0.05) examined relationships between the FMS and performance tests. Stepwise multiple regressions (p ≤ 0.05) were conducted for the performance tests to determine FMS predictors. Unilateral sit-and-reach positive correlated with the left-leg ASLR (r = 0.704-0.725). However, higher-scoring HS, ILL, and ASLR related to poorer 505 and T-test performance (r = 0.722-0.829). A higher-scored left-leg ASLR related to a poorer unilateral vertical and standing broad jump, which were the only significant relationships for jump performance. Predictive data tended to confirm the correlations. The results suggest limitations in using the FMS to identify movement deficiencies that could negatively impact athletic performance in female team sport athletes. 相似文献
59.
JÖRG MALETZ MICHAEL STEINER OLDRICH FATKA 《Lethaia: An International Journal of Palaeontology and Stratigraphy》2005,38(1):73-85
The presence of distinct fusellar structure is taken as evidence to include a number of fossils from the Middle Cambrian to the Lower Ordovician of North America and Europe with the Pterobranchia. The dome of the pterobranchs and the prosicula of the planktic graptolites are contrasted and evidence is given for the re‐assignment of a number of well known dendroid graptolites to the pterobranchs. A non‐destructive method is described to reveal fusellar development of delicate hemichordate exoskeletons from shales. Rhabdotubus robustus n. sp. from the Czech Republic and ? Cephalodiscus sp. from the Wheeler Shale of North America are described as new Middle Cambrian pterobranchs. 相似文献
60.
ALEXANDER GALLÉ SILKE LAUTNER JAUME FLEXAS MIQUEL RIBAS‐CARBO DAVID HANSON JOHN ROESGEN JÖRG FROMM 《Plant, cell & environment》2013,36(3):542-552
In recent years, the effect of heat‐induced electrical signalling on plant photosynthetic activity has been demonstrated for many plant species. However, the underlying triggers of the resulting transient inhibition of photosynthesis still remain unknown. To further investigate on this phenomenon, we focused in our present study on soybean (Glycine max L.) on the direct effect of signal transmission in the leaf mesophyll on conductance for CO2 diffusion in the mesophyll (gm) and detected a drastic decline in gm following the electrical signal, whereas the photosynthetic electron transport rate (ETR) was only marginally affected. In accordance with the drop in net photosynthesis (AN), energy dispersive X‐ray analysis (EDXA) revealed a shift of K, Mg, O and P on leaf chloroplasts. Control experiments under elevated CO2 conditions proved the transient reduction of AN, ETR, the chloroplast CO2 concentration (Cc) and gm to be independent of the external CO2 regime, whereas the effect of the electrical signal on stomatal conductance for CO2 (gs) turned out much less distinctive. We therefore conclude that the effect of electrical signalling on photosynthesis in soybean is triggered by its immediate effects on gm. 相似文献