首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4358篇
  免费   302篇
  2023年   19篇
  2021年   28篇
  2020年   28篇
  2019年   28篇
  2018年   66篇
  2017年   79篇
  2016年   114篇
  2015年   215篇
  2014年   220篇
  2013年   278篇
  2012年   352篇
  2011年   299篇
  2010年   183篇
  2009年   150篇
  2008年   263篇
  2007年   262篇
  2006年   233篇
  2005年   206篇
  2004年   181篇
  2003年   199篇
  2002年   209篇
  2001年   75篇
  2000年   76篇
  1999年   64篇
  1998年   27篇
  1997年   19篇
  1995年   29篇
  1994年   30篇
  1993年   23篇
  1992年   42篇
  1991年   37篇
  1990年   45篇
  1989年   35篇
  1988年   34篇
  1987年   44篇
  1986年   29篇
  1985年   36篇
  1984年   37篇
  1983年   28篇
  1982年   16篇
  1981年   24篇
  1980年   20篇
  1979年   17篇
  1978年   22篇
  1977年   17篇
  1974年   17篇
  1973年   32篇
  1972年   21篇
  1971年   23篇
  1970年   18篇
排序方式: 共有4660条查询结果,搜索用时 296 毫秒
91.
Antifungal activity in vitro has been associated with barley leaf and grain proteins which are homologous with pathogenesis related proteins of type 4 (PR-4) from tobacco and tomato and with C terminal domains of potato win and Hevea hevein precursor proteins. One protein (pI approximately 9.3, M(r) approximately 13.7 kDa) from barley grain and two very similar proteins from leaves infected with Erysiphe graminis were isolated by chitin affinity chromatography, but none of the proteins showed chitinase activity in vitro. The leaf proteins were increased several fold in response to either Erysiphe infection or NiCl2 infiltration and accumulated extracellularly. The three barley proteins were found to inhibit growth of Trichoderma harzianum in microtiter plate assays using approximately 10 micrograms/ml concentrations and in lower concentrations in a synergistic way when mixed either with barley chitinase C (a PR-3 type protein) or with barley protein R (a PR-5 type protein). Structurally similar proteins were detected in wheat, rye and oats grain extracts.  相似文献   
92.
The mechanism and stereochemistry in connection with enzymatic conversion of cholesta-4,6-dien-3-one into cholestanol was studied. Rat and mouse liver microsomes are able to catalyze NADPH-dependent sequential saturation of the two double bonds. Evidence was obtained that the saturation of the delta 6-double bond includes transfer of a hydride ion from the B-side of the cofactor to the 7-position of the steroid (mainly 7 beta-position), followed by addition of a proton to the 6 alpha-position (mainly trans addition). The saturation of the delta 4-double bond includes transfer of a hydride ion from the B-side of the cofactor to the 5 alpha-position of the steroid followed by addition of a proton to the 4 beta-position (trans addition). The reduction of the 3-oxo group was found to involve transfer of a hydride ion from the B-side of the cofactor NADPH to the 3 alpha-position of the steroid. The results are in accord with the contention that the enzymatic saturation of the two double bonds involves a polarization of the 3-oxo group making C-7 electrophilic and C-6 nucleophilic in connection with the saturation of the delta 6-double bond and C-5 electrophilic and C-4 nucleophilic in connection with the saturation of the delta 4-double bond.  相似文献   
93.
Immunoglobulin (Ig)-binding bacterial proteins have attracted theoretical interest for their role in molecular host-parasite interactions, and they are widely used as tools in immunology, biochemistry, medicine, and biotechnology. Protein L of the anaerobic bacterial species Peptostreptococcus magnus binds Ig light chains, whereas streptococcal protein G has affinity for the constant (Fc) region of IgG. In this report, Ig binding parts of protein L and protein G were combined to form a hybrid molecule, protein LG, which was found to bind a large majority of intact human Igs as well as Fc and Fab fragments, and Ig light chains. Binding to Ig was specific, and the affinity constants of the reactions between protein LG and human IgG, IgGFc fragments, and kappa light chains, determined by Scatchard plots, were 5.9 x 10(9), 2.2 x 10(9), and 2.0 x 10(9) M-1, respectively. The binding properties of protein LG were more complete as compared with previously described Ig-binding proteins when also tested against mouse and rat Igs. This hybrid protein thus represents a powerful tool for the binding, detection, and purification of antibodies and antibody fragments.  相似文献   
94.
Light-induced chloroplast movements were found to cause changes in chlorophyll fluorescence emission, closely matching those in leaf absorptance, both in terms of the kinetics and the maximum extent of the changes observed in different species. The results demonstrate that chloroplast movements can have a significant effect on the efficiency of light utilization in photosynthesis. They further show that chloroplast movements need to be taken into account in measurements of fluorescence quenching and especially in measurements of light-induced optical changes used to monitor zeaxanthin formation and pH associated light scattering in leaves. Means of minimizing and of adjusting for the influences of chloroplast movements in such measurements are discussed.Abbreviations F fluorescence emission - PFD photon flux density - R reflectance - T transmittance - absorptance C.I.W.-D.P.B. Publication No. 1116.  相似文献   
95.
Formation of bile acids from sitosterol in bile-fistulated female Wistar rats was studied with use of 4-14C-labeled sitosterol and sitosterol labeled with 3H in specific positions. The major part (about 75%) of the 14C radioactivity recovered as bile acids in bile after intravenous administration of [4-14C]sitosterol was found to be considerably more polar than cholic acid, and only trace amounts of radioactivity had chromatographic properties similar to those of cholic acid and chenodeoxycholic acid. It was shown that polar metabolites were formed by intermediate oxidation of the 3 beta-hydroxyl group (loss of 3H from 3 alpha-3H-labeled sitosterol) and that the most polar fraction did not contain a hydroxyl group at C7 (retention of 3H in 7 alpha,7 beta-3H2-labeled sitosterol). Furthermore, the polar metabolites had lost at least the terminal 6 or 7 carbon atoms of the side chain (loss of 3H from 22,23-3H2- and 24,28-3H2-labeled sitosterol). Experiments with 3H-labeled 7 alpha-hydroxysitosterol and 4-14C-labeled 26-hydroxysitosterol showed that none of these compounds was an efficient precursor to the polar metabolites. By analysis of purified most polar products of [4-14C] sitosterol by radio-gas chromatography and the same products of 7 alpha,7 beta-[2H2]sitosterol by combined gas chromatography-mass spectrometry, two major metabolites could be identified as C21 bile acids. One metabolite had three hydroxyl groups (3 alpha, 15, and unknown), and one had two hydroxyl groups (3 alpha, 15) and one keto group. Considerably less C21 bile acids were formed from [4-14C]sitosterol in male than in female Wistar rats. The C21 bile acids formed in male rats did not contain a 15-hydroxyl group. Conversion of a [4-14C]sitosterol into C21 bile acids did also occur in adrenalectomized and ovariectomized rats, indicating that endocrine tissues are not involved. Experiments with isolated perfused liver gave direct evidence that the overall conversion of sitosterol into C21 bile acids occurs in this organ. Intravenously injected 7 alpha,7 beta-3H-labeled campesterol gave a product pattern identical to that of 4-14C-labeled sitosterol. Possible mechanisms for hepatic conversion of sitosterol and campesterol into C21 bile acids are discussed.  相似文献   
96.
Role of tRNA modification in translational fidelity   总被引:10,自引:0,他引:10  
In transfer RNA many different modified nucleosides are found, especially in the anticodon region. In this region, pseudouridine (psi) is found in positions 38, 39 or 40 in a subset of tRNA species, 2-methylthio-6-hydroxyisopentenyladenosine (ms2io6A) is found in position 37 in tRNAs that read codons starting with U and 1-methylguanosine (m1G) is found in position 37 in tRNAs reading codons of the UCCNG type. We have used the mutants hisT, miaA and miaB and trmD, which are deficient in the biosynthesis of psi, ms2io6A, and m1G, respectively, to study the functional aspects of the respective modified nucleosides. We have shown: (1) Presence of psi improved the cellular growth rate, the polypeptide step-time, and the efficiency of an amber suppressor, but did not appreciably sense the codon context. (2) Presence of ms2io6A improved the cellular growth rate, the polypeptide step-time and the efficiency of several amber suppressor tRNAs. It also had a profound effect on the codon context sensitivity of the tRNA. (3) Presence of m1G improved the cellular growth rate and the polypeptide steptime and also prevented the tRNA from shifting the reading frame. Thus, these three modified nucleosides present in the anticodon region have apparently different functions.  相似文献   
97.
General aspects of the mechanism of antithrombin action were elucidated by a comparison of the inactivation of trypsin by antithrombin with the inactivation of coagulation proteinases by the inhibitor. Bovine antithrombin and bovine trypsin were shown to form an inactive equimolar complex. A non-complexed, proteolytically modified form of antithrombin, electrophoretically identical with that formed in the reaction with coagulation proteinases, was also produced in the reaction with trypsin. In the absence of heparin, the inactivation of trypsin by antithrombin was 20 times faster than the inactivation of thrombin; the second-order rate constant was 1.5 x 10(5)m(-1).s(-1) at 25 degrees C and pH 7.4. However, the inhibition of thrombin was accelerated about 30 times more efficiently by small amounts of heparin than was trypsin inhibition. Dissociation of the antithrombin-trypsin complex at pH 7.4 followed first-order kinetics with a half-life for the complex of about 80h at 25 degrees C. The complex was rapidly and quantitatively dissociated at pH 11, resulting in the liberation of a modified two-chain form of the inhibitor, cleaved at the same Arg-Ser bond as in modified antithrombin released from complexes with thrombin, Factor Xa and Factor IXa. This supports the previous proposal that this bond is the active-site bond of antithrombin. Antisera specific for thrombin-modified antithrombin reacted with purified antithrombin-trypsin complex, indicating that the inhibitor was present in the complex in a form immunologically identical with thrombin-modified antithrombin. The results thus suggest a common mechanism, but different kinetics, for the inhibition of trypsin and coagulation proteinases by antithrombin.  相似文献   
98.
Mechanism of the anticoagulant action of heparin   总被引:20,自引:0,他引:20  
Summary The anticoagulant effect of heparin, a sulfated glycosaminoglycan produced by mast cells, requires the participation of the plasma protease inhibitor antithrombin, also called heparin cofactor. Antithrombin inhibits coagulation proteases by forming equimolar, stable complexes with the enzymes. The formation of these complexes involves the attack by the enzyme of a specific Arg-Ser bond in the carboxy-terminal region of the inhibitor. The complexes so formed are not dissociated by denaturing solvents, which indicates that a covalent bond may contribute to their stability. This bond may be an acyl bond between the active-site serine of the enzyme and the arginine of the cleaved reactive bond of the inhibitor. However, the native complexes dissociate slowly at near-neutral pH into free enzyme and a modified inhibitor, cleaved at the reactive bond. So, antithrombin apparently functions as a pseudo-substrate that traps the enzyme in a kinetically stable complex.The reactions between antithrombin and coagulation proteases are slow in the absence of heparin. However, optimal amounts of heparin accelerate these reactions up to 2 000-fold, thereby efficiently preventing the formation of fibrin in blood. The accelerating effect, and thus the anticoagulant activity, is shown by only about one-third of the molecules in all heparin preparations, while the remaining molecules are almost inactive. The highly active molecules bind tightly to antithrombin, i.e. with a binding constant of slightly below 108 M–1 at physiological ionic strength, while the relatively inactive molecules bind about a thousand-fold more weakly. The binding of the high-affinity heparin to antithrombin is accompanied by a conformational change in the inhibitor that is detectable by spectroscopic and kinetic methods. This conformational change follows an initial, weak binding of heparin to antithrombin and causes the tight interaction between polysaccharide and inhibitor that is prerequisite to heparin anticoagulant activity. It has also been postulated that the conformational change leads to a more favourable exposure of the reactive site of antithrombin, thereby allowing the rapid interaction with the proteases.Heparin also binds to the coagulation proteases. Recent studies indicate that this binding is weaker and less specific that the binding to antithrombin. Nevertheless, for some enzymes, thrombin, Factor IXa and Factor XIa, an interaction between heparin and the protease, in addition to that between the polysaccharide and antithrombin; apparently is involved in the accelerated inhibition of the enzymes. The effect of this interaction may be to approximate enzyme with inhibitor in an appropriate manner. However, the bulk of the evidence available indicates that binding of heparin to the protease alone cannot be responsible for the accelerating effect of the polysaccharide on the antithrombin-protease reaction.Heparin acts as a catalyst in the antithrombin-protease reaction, i.e. it accelerates the reaction in non-stoichiometric amounts and is not consumed during the reaction. This ability can be explained by heparin being released from the antithrombin-protease complex for renewed binding to antithrombin, once the complex has been formed. Such a decresed affinity of heparin for the antithrombin complex, compared to the affinity for antithrombin alone, has been demonstrated.The structure of the antithrombin-binding region in heparin has been investigated following the isolation of oligosaccharides with high affinity for antithrombin. The smallest such oligosaccharide, an octasaccharide, obtained after partial random depolymerization of heparin with nitrous acid, was found to contain a unique glucosamine-3-O-sulfate group, which could not be detected in other portions of the high affinity heparin molecule and which was absent in heparin with low affinity for antithrombin. The actual antithrombin-binding region within this octasaccharide molecule has been identified as a pentasaccharide sequence with he predominant structure: N-acetyl-D-glucosamine(6-O-SO3)D-glucoronic acidD-glucosamine(N-SO3;3,6-di-O-SO3)L-iduronic acid(2-O-SO3)D-glucosamine(N-SO3;6-O-SO3). In addition to the 3-O-sulfate group, both N-sulfate groups as well as the 6-O-sulfate group of the N-acetylated glucosamine unit appear to be essential for the interaction with antithrombin. The remarkably constant structure of this sequence, as compared to other regions of the heparin molecule, suggests a strictly regulated mechanism of biosynthesis.The ability of heparin to potentiate the inhibition of blood coagulation by antithrombin generally decreases with decreasing molecular weight of the polysaccharide. However, individual coagulation enzymes differ markedly with regard to this molecular-weight dependence. Oligosaccharides in the extreme low-molecular weight range, i.e. octa- to dodecasaccharides, with high affinity for antithrombin have high anti-Factor Xa-activity but are virtually unable to potentiate the inhibition of thrombin. Furthermore, such oligosaccharides are ineffective in preventing experimentally induced venous thrombosis in rabbits. Slightly larger oligosaccharides, containing 16 to 18 monosaccharide residues, show significant anti-thrombin as well as antithrombotic activities, yet have little effect on overall blood coagulation. These findings indicate that the affinity of a heparin fragment for antithrombin is not in itself a measure of the ability to prevent venous thrombo-genesis, and that the anti-Factor Xa activity of heparin is only a partial expression of its therapeutic potential as an antithrombotic agent.The biological role of the interaction between heparin and antithrombin is unclear. In addition to a possible function in the regulation of hemostasis, endogenous heparin may serve as a regulator of extravascular serine proteinases. Mouse peritoneal macrophages have been found to synthesize all the enzymes that constitute the extrinsic pathway of coagulation. Moreover, tissue thromboplastin is produced by these cells in response to a functional interaction with activated T-lymphocytes. The inhibition of this extravascular coagulation system by heparin, released from mast cells, may be potentially important in modulating inflammatory reactions.  相似文献   
99.
The formation of a microbial biofilm on glass surfaces arranged in lamellar piles parallel with circulating sea water (3 cm·sec–1) was studied. The increase in dry weight, protein content, nucleotide content (ATP, ADP), and diatoms was followed over a period of 62 days. Dry weight and protein were estimates of the total biofilm development, whereas the nucleotide measurements revealed the viability of the biofilm and reflected the dynamics in the community structure.  相似文献   
100.
Serum ionized calcium concentrations (CaF) were determined in 87 Swedish red-and-white cows and 10 Swedish Friesian cows with clinical signs of parturient paresis. All cows were in the week prior to or after parturition. A classification of the severity of hypocalcemia in terms of serum ionized calcium was devised. Eight cows had normal serum ionized calcium concentrations (Cap 1.06–1.26 mmol/1); 15 had slight (CaF 0.80–1.05 mmol/1); 43 a moderate (CaF 0.50–0.79 mmol/1), and 31 asevere (CaF < 0.50 mmol/1) hypocalcemia. All cows were given 8 or 8.3 g of calcium intravenously. Of 8 normocalcemic cows 7 (87.5 %) reached a maximum posttreatment serum ionized calcium concentration > 1.80 mmol/1 (severe hypercalcemia). This was also found in 13 of 15 (86.7 %) slightly hypocalcemic cows and in 31 of 43 (72.1 %) moderately hypocalcemic cows. In the severe hypocalcemia group 14 of 31 (45.2 %) had maximum posttreatment Cap > 1.80 mmol/1). These findings emphazise the need of a rapid pretreatment evaluation of the degree of hypocalcemia. The present study also underlined the difficulty in predicting serum ionized calcium from serum total calcium concentrations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号